Sains Malaysiana 47(12)(2018): 3043–3049

http://dx.doi.org/10.17576/jsm-2018-4712-14

 

Electrochemical Characterisation of Heat-Treated Metal and Non-Metal Anodes using Mud in Microbial Fuel Cell

(Pencirian Elektrokimia bagi Logam dan Bukan-Logam Anod dengan Rawatan-Haba menggunakan Lumpur dalam Sel Fuel Mikrob)

 

RABA’ATUN ADAWIYAH SHAMSUDDIN1, WAN RAMLI WAN DAUD1,2, KIM BYUNG HONG1,4,5, JAMALIAH MD. JAHIM1,2, MIMI HANI ABU BAKAR1*, WAN SYAIDATUL AQMA WAN MOHD NOOR3 & ROZAN MOHAMAD YUNUS1

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Korea Institute of Science and Technology, Seoul 136-791, Korea

 

5State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

 

Received: 30 May 2018 /Accepted: 14 September 2018

 

ABSTRACT

Microbial fuel cells (MFCs) have a high potential application for simultaneous wastewater treatment and electricity generation. However, the choice of the electrode material and its design is critical and directly affect their performance. As an electrode of MFCs, the anode material with surface modifications is an attractive strategy to improve the power output. In this study, stainless steel (SS) and carbon steel (CS) was chosen as a metal anode, while graphite felt (GF) was used as a common anode. Heat treatment was performed to convert SS, CS and GF into efficient anodes for MFCs. The maximum current density and power density of the MFC-SS were achieved up till 762.14 mA/m2 and 827.25 mW/m2, respectively, which were higher than MFC-CS (641.95 mA/m2 and 260.14 mW/m2) and MFC-GF (728.30 mA/m2 and 307.89 mW/m2). Electrochemical impedance spectroscopy of MFC-SS showed better catalytic activity compared to MFC-CS and MFC-GF anode, also supported by cyclic voltammetry test.

 

Keywords: Anode; carbon steel; graphite felt; MFC; stainless steel

 

ABSTRAK

Sel bahan api mikrob (MFCs) mempunyai aplikasi yang berpotensi tinggi untuk rawatan air sisa kumbahan dan penghasilan tenaga elektrik. Walau bagaimanapun, pemilihan bahan elektrod dan reka bentuknya adalah sangat penting dan secara langsung mempengaruhi prestasi mereka. Sebagai elektrod MFC, bahan anod dengan pengubahsuaian permukaan dianggap sebagai strategi yang berkesan bagi meningkatkan output kuasa. Dalam kajian ini, keluli tahan karat (SS) dan keluli karbon (CS) dipilih sebagai anod logam, manakala serat grafit (GF) digunakan sebagai anod biasa. Rawatan haba dilakukan untuk menjadikan SS, CS dan GF kepada anod yang lebih cekap untuk MFC. Ketumpatan arus maksimum dan ketumpatan kuasa MFC-SS, masing-masing telah mencapai sehingga 762.14 mA/m2 dan 827.25 mW/m2, iaitu lebih tinggi daripada MFC-CS (641.95 mA/m2 dan 260.14 mW/m2) dan MFC-GF (728.30 mA/m2 dan 307.89 mW/m2). Menerusi spektroskopi impedans elektrokimia (EIS), MFC-SS menunjukkan aktiviti katalitik yang lebih baik berbanding dengan MFC-CS dan MFC-GF, yang juga disokong oleh ujian kitaran voltammetri (CV).

 

Kata kunci: Anod; keluli karbon; keluli tahan karat; MFC; serat grafit

REFERENCES

Batchelor-Mcauley, C., Katelhon, E., Barnes, E.O., Compton, R.G., Laborda, E. & Molina, A. 2015. Recent advances in voltammetry. Chemistry Open 4(3): 224-260.

Baudler, A., Schmidt, I., Langner, M., Greiner, A. & Schroder, U. 2015. Does it have to be carbon? metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy and Environmental Science 8(7): 2048-2055.

Behera, M. & Ghangrekar, M.M. 2009. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology 100(21): 5114-5121.

Cheng, C.K., Lin, J.Y., Huang, K.C., Yeh, T.K. & Hsieh, C.K. 2017. Enhanced efficiency of dye-sensitized solar counter electrodes consisting of two-dimensional nanostructural molybdenum disulfide nanosheets supported pt nanoparticles. Coatings 7(167): 1-10.

Cui, D., Wang, Y.Q., Xing, L.D. & Li, W.S. 2014. Which determines power generation of microbial fuel cell based on carbon anode, surface morphology or oxygen-containing group?. International Journal of Hydrogen Energy 39(27): 15081-15087.

Dumas, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L. & Bergel, A. 2008. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresource Technology 99(18): 8887-8894.

Friman, H., Schechter, A., Ioffe, Y., Nitzan, Y. & Cahan, R. 2013. Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microbial Biotechnology 6(4): 425-434.

Guo, K., Donose, B.C., Soeriyadi, A.H., Prevoteau, A., Patil, S.A., Freguia, S., Gooding, J.J. & Rabaey, K. 2014. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environmental Science and Technology 48(12): 7151-7156.

Guo, K., Soeriyadi, A.H., Feng, H., Prevoteau, A., Patil, S.A., Gooding, J.J. & Rabaey, K. 2015. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems. Bioresource Technology 195: 46-50.

Haque, N., Cho, D. & Kwon, S. 2015. Characteristics of electricity production by metallic and nonmetallic anodes immersed in mud sediment using sediment microbial fuel cell. Materials Science and Engineering 88: 1-12.

Hou, J., Liu, Z., Yang, S. & Zhou, Y. 2014. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. Journal of Power Sources 258(1): 204-209.

Kato, S. 2016. Microbial extracellular electron transfer and its relevance to iron corrosion. Microbiology and Biotechnology 9(2): 141-148.

Kracke, F., Vassiley, I. & Kromer, J.O. 2015. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology 6: 575-579.

Ledezma, P., Donose, B., Freguia, S. & Keller, J. 2015. Oxidised stainless steel: A very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. Electrochimica Acta 158(1): 356-360.

Li, F., Sharma, Y., Lei, Y., Li, B. & Zhou, Q. 2010. Microbial fuel cells: The effects of configurations, electrolyte solutions and electrode materials on power generation. Applied Biochemistry and Biotechnology 160(1): 168-181.

Lim, S.S., Jahim, J.M., Shari, S.N., Ismail, M. & Daud, W.R.W. 2012. Development of microbial fuel cell for palm oil mill effluent treatment. Sains Malaysiana 41(10): 1253-1261.

Liu, J., Liu, Y., Feng, C., Wang, Z., Jia, T., Gong, L. & Xu, L. 2017. Enhanced performance of microbial fuel cell using carbon microspheres modified graphite anode. Energy Science and Engineering 5(4): 217-225.

Logan, B.E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 7(5): 375-381.

Mahmood, N.A.N., Ghazali, N.F., Ibrahim, K.A. & Ali, M.A. 2017. Anodic pH evaluation on performance of power generation from palm oil empty fruit bunch (EFB) in dual chambered microbial fuel cell (MFC). Chemical Engineering Transactions 56: 1795-1800.

Manohar, A.K., Bretschger, O., Nealson, K.H. & Mansfeld, F. 2008. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72(2): 149-154.

Mathuriya, A.S. & Yakhmi, J.V. 2016. Microbial fuel cells - applications for generation of electrical power and beyond. Critical Review of Microbiology 42(1): 127-143.

Mustakeem, M. 2015. Electrode materials for microbial fuel cells: Nanomaterial approach. Materials for Renewable and Sustainable Energy 4(4): 22.

Peng, X., Chen, S., Liu, L., Zheng, S. & Li, M. 2016. Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochimica Acta 194: 246-252.

Pocaznoi, D., Calmet, A., Etcheverry, L., Erable, B. & Bergel, A. 2012. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy and Environmental Science 5(11): 9645-9652.

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal 54(3): 745-756.

Rosenbaum, M., Aulenta, F., Villano, M. & Angenent, L.T. 2011. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?. Bioresource Technology 102(1): 324-333.

Sahrani, F.K., Aziz, M., Ibrahim, Z. & Yahya, A. 2008. Open circuit potential study of stainless steel in environment containing marine sulphate-reducing bacteria. Sains Malaysiana 37(4): 359-364.

Saito, T., Mehanna, M., Wang, X., Cusick, R.D., Feng, Y., Hickner, M.A. & Logan, B.E. 2011. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technology 102(1): 395-398.

Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. 2017. Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources 356: 225-244.

Saratale, R.G., Saratale, G.D., Pugazhendhi, A., Zhen, G., Kumar, G., Kadier, A. & Sivagurunathan, P. 2017. Microbiome involved in microbial electrochemical systems (MESs): A review. Chemosphere 177: 176-188.

Selemboa, P.A., Merrill, M.D. & Logan, B.E. 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources 190: 271-278.

Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.Q. & Fredrickson, J.K. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14: 651-662.

Sonawane, J.M., Yadav, A., Ghosh, P.C. & Adeloju, S.B. 2017. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosensors and Bioelectronics 90: 558-576.

Song, H.L., Zhu, Y. & Li, J. 2015. Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells-a mini review. Arabian Journal of Chemistry https://doi.org/10.1016/j.arabjc.2015.01.008.

Strycharz, S.M., Malanoski, A.P., Snider, R.M., Yi, H., Lovley, D.R. & Tender, L.M. 2011. Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energy and Environmental Science 4: 896-913.

Sun, H., Xu, S., Zhuang, G. & Zhuang, X. 2016. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. Journal of Environmental Sciences 39: 242-248.

Uria, N., Ferrera, I. & Mas, J. 2017. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiology 17: 208.

Wang, C. & Ma, J. 2016. Applications of graphene-modified electrodes in microbial fuel cells. Materials 807(9): 1-28.

Wei, J., Liang, P. & Huang, X. 2011. Recent progress in electrodes for microbial fuel cells. Bioresource Technology 102(20): 9335-9344.

Yamashita, T., Ishida, M., Asakawa, S., Kanamori, H., Sasaki, H., Ogino, A., Katayose, Y., Hatta, T. & Yokoyama, H. 2016. Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnology for Biofuels 9(1): 62-68.

Yuan, Y., Zhao, B., Shungui, Z., Zhong, S. & Zhuang, L. 2011. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource Technology 102(13): 6887-6891.

Zhang, R.E., Liu, L. & Ying, C.Y. 2013. Effect of ph on the performance of the anode in microbial fuel cells. Advanced Materials Research 608: 884-888.

Zhao, Q., Yu, H., Zhang, W., Kabutey, F.T., Jiang, J., Zhang, Y., Wang, K. & Ding, J. 2017. Microbial fuel cell with high content solid wastes as substrates: A review. Frontiers of Environmental Science and Engineering 11(2): 13.

Zheng, S., Yang, F. & Chen, S. 2015. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources 284: 252-257.

Zhu, X.P. & Logan, B. 2014. Copper anode corrosion affects power generation in microbial fuel cells. Chemical Technology and Biotechnology 89(3): 471-474.

 

*Corresponding author; email: mimihani@ukm.edu.my

 

 

 

 

 

 

previous