Sains Malaysiana 47(12)(2018): 3043–3049
http://dx.doi.org/10.17576/jsm-2018-4712-14
Electrochemical Characterisation
of Heat-Treated Metal and Non-Metal Anodes using Mud in Microbial
Fuel Cell
(Pencirian Elektrokimia bagi Logam dan Bukan-Logam
Anod dengan
Rawatan-Haba menggunakan Lumpur
dalam Sel Fuel Mikrob)
RABA’ATUN ADAWIYAH
SHAMSUDDIN1,
WAN
RAMLI
WAN
DAUD1,2,
KIM
BYUNG
HONG1,4,5,
JAMALIAH
MD.
JAHIM1,2, MIMI HANI
ABU
BAKAR1*,
WAN
SYAIDATUL
AQMA
WAN
MOHD
NOOR3
& ROZAN MOHAMAD YUNUS1
1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Department of Chemical and Process
Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
3School of Biosciences and Biotechnology,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Korea Institute of Science and Technology,
Seoul 136-791, Korea
5State Key Laboratory of Urban Water
Resource and Environment, Harbin Institute of Technology, Harbin
150090, China
Received: 30 May 2018 /Accepted:
14 September 2018
ABSTRACT
Microbial fuel cells (MFCs)
have a high potential application for simultaneous wastewater treatment
and electricity generation. However, the choice of the electrode
material and its design is critical and directly affect their performance.
As an electrode of MFCs,
the anode material with surface modifications is an attractive strategy
to improve the power output. In this study, stainless steel (SS)
and carbon steel (CS) was chosen as a metal anode, while
graphite felt (GF) was used as a common anode. Heat
treatment was performed to convert SS, CS and
GF
into efficient anodes for MFCs. The maximum current density
and power density of the MFC-SS were achieved up till 762.14 mA/m2 and
827.25 mW/m2, respectively, which were higher
than MFC-CS (641.95 mA/m2 and 260.14 mW/m2) and MFC-GF (728.30
mA/m2 and 307.89 mW/m2).
Electrochemical impedance spectroscopy of MFC-SS showed
better catalytic activity compared to MFC-CS and MFC-GF anode,
also supported by cyclic voltammetry test.
Keywords: Anode; carbon steel;
graphite felt; MFC; stainless steel
ABSTRAK
Sel bahan api
mikrob (MFCs) mempunyai
aplikasi yang berpotensi
tinggi untuk rawatan
air sisa kumbahan
dan penghasilan tenaga elektrik. Walau bagaimanapun, pemilihan bahan elektrod dan reka bentuknya
adalah sangat
penting dan secara
langsung mempengaruhi
prestasi mereka. Sebagai elektrod MFC,
bahan anod dengan
pengubahsuaian permukaan
dianggap sebagai strategi yang berkesan bagi meningkatkan output kuasa. Dalam kajian ini, keluli tahan karat (SS)
dan keluli karbon (CS) dipilih
sebagai anod
logam, manakala serat grafit (GF)
digunakan sebagai anod biasa. Rawatan haba dilakukan untuk menjadikan SS,
CS
dan GF kepada anod yang lebih cekap untuk MFC.
Ketumpatan arus
maksimum dan ketumpatan
kuasa MFC-SS, masing-masing
telah mencapai
sehingga 762.14 mA/m2 dan
827.25 mW/m2, iaitu
lebih tinggi
daripada MFC-CS (641.95 mA/m2 dan 260.14 mW/m2) dan MFC-GF (728.30 mA/m2 dan 307.89 mW/m2).
Menerusi spektroskopi impedans elektrokimia (EIS), MFC-SS
menunjukkan aktiviti
katalitik yang lebih baik berbanding dengan MFC-CS dan
MFC-GF,
yang juga disokong oleh
ujian kitaran voltammetri
(CV).
Kata kunci: Anod;
keluli karbon;
keluli tahan karat; MFC; serat grafit
REFERENCES
Batchelor-Mcauley,
C., Katelhon, E., Barnes, E.O., Compton,
R.G., Laborda, E. & Molina, A. 2015. Recent advances
in voltammetry. Chemistry Open 4(3): 224-260.
Baudler,
A., Schmidt, I., Langner, M., Greiner,
A. & Schroder, U. 2015.
Does it have to be carbon? metal anodes
in microbial fuel cells and related bioelectrochemical
systems. Energy and Environmental Science 8(7): 2048-2055.
Behera,
M. & Ghangrekar, M.M. 2009. Performance of microbial fuel cell in response to change in sludge
loading rate at different anodic feed pH.
Bioresource Technology 100(21): 5114-5121.
Cheng,
C.K., Lin, J.Y., Huang, K.C., Yeh, T.K.
& Hsieh, C.K. 2017.
Enhanced efficiency of dye-sensitized solar counter electrodes consisting
of two-dimensional nanostructural molybdenum
disulfide nanosheets supported pt nanoparticles.
Coatings 7(167): 1-10.
Cui,
D., Wang, Y.Q., Xing, L.D. & Li, W.S. 2014. Which determines
power generation of microbial fuel cell based on carbon anode, surface
morphology or oxygen-containing group?.
International Journal of Hydrogen Energy 39(27): 15081-15087.
Dumas,
C., Mollica, A., Feron,
D., Basseguy, R., Etcheverry,
L. & Bergel, A. 2008. Checking graphite and stainless anodes with an experimental model
of marine microbial fuel cell. Bioresource
Technology 99(18): 8887-8894.
Friman,
H., Schechter, A., Ioffe, Y., Nitzan,
Y. & Cahan, R. 2013. Current production in a microbial fuel cell using a pure culture of
Cupriavidus basilensis
growing in acetate or phenol as a carbon source. Microbial
Biotechnology 6(4): 425-434.
Guo,
K., Donose, B.C., Soeriyadi,
A.H., Prevoteau, A., Patil,
S.A., Freguia, S., Gooding, J.J. &
Rabaey, K. 2014. Flame oxidation of stainless steel felt
enhances anodic biofilm formation and current output in bioelectrochemical
systems. Environmental Science and Technology 48(12): 7151-7156.
Guo,
K., Soeriyadi, A.H., Feng, H., Prevoteau,
A., Patil, S.A., Gooding, J.J. & Rabaey, K. 2015. Heat-treated stainless steel felt as scalable
anode material for bioelectrochemical
systems. Bioresource Technology
195: 46-50.
Haque, N., Cho, D. &
Kwon, S. 2015. Characteristics of electricity
production by metallic and nonmetallic anodes immersed in mud sediment
using sediment microbial fuel cell. Materials Science
and Engineering 88: 1-12.
Hou,
J., Liu, Z., Yang, S. & Zhou, Y. 2014. Three-dimensional macroporous anodes based on stainless steel fiber felt for
high-performance microbial fuel cells. Journal of Power Sources
258(1): 204-209.
Kato, S. 2016.
Microbial extracellular electron transfer and its relevance to iron
corrosion. Microbiology and Biotechnology 9(2): 141-148.
Kracke,
F., Vassiley, I. & Kromer, J.O. 2015. Microbial electron transport and energy conservation - the foundation
for optimizing bioelectrochemical systems.
Frontiers in Microbiology 6: 575-579.
Ledezma,
P., Donose, B., Freguia,
S. & Keller, J. 2015. Oxidised stainless steel:
A very effective electrode material for microbial fuel cell bioanodes
but at high risk of corrosion. Electrochimica
Acta 158(1): 356-360.
Li,
F., Sharma, Y., Lei, Y., Li, B. & Zhou, Q. 2010. Microbial fuel
cells: The effects of configurations, electrolyte solutions and
electrode materials on power generation. Applied Biochemistry
and Biotechnology 160(1): 168-181.
Lim,
S.S., Jahim, J.M., Shari, S.N., Ismail,
M. & Daud, W.R.W. 2012. Development of microbial fuel cell for palm
oil mill effluent treatment. Sains
Malaysiana 41(10): 1253-1261.
Liu,
J., Liu, Y., Feng, C., Wang, Z., Jia,
T., Gong, L. & Xu, L. 2017.
Enhanced performance of microbial fuel cell using carbon microspheres
modified graphite anode. Energy Science and Engineering 5(4):
217-225.
Logan,
B.E. 2009.
Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews
Microbiology 7(5): 375-381.
Mahmood,
N.A.N., Ghazali, N.F., Ibrahim, K.A. &
Ali, M.A. 2017.
Anodic pH evaluation on performance of power generation from palm
oil empty fruit bunch (EFB) in dual chambered microbial fuel cell
(MFC). Chemical Engineering Transactions 56: 1795-1800.
Manohar,
A.K., Bretschger, O., Nealson,
K.H. & Mansfeld, F. 2008. The use of electrochemical impedance spectroscopy (EIS) in the evaluation
of the electrochemical properties of a microbial fuel cell.
Bioelectrochemistry 72(2): 149-154.
Mathuriya,
A.S. & Yakhmi, J.V. 2016. Microbial fuel cells - applications for generation of electrical power
and beyond. Critical Review of Microbiology 42(1):
127-143.
Mustakeem, M. 2015. Electrode
materials for microbial fuel cells: Nanomaterial approach. Materials
for Renewable and Sustainable Energy 4(4): 22.
Peng, X., Chen,
S., Liu, L., Zheng, S. & Li, M. 2016. Modified
stainless steel for high performance and stable anode in microbial
fuel cells. Electrochimica Acta 194:
246-252.
Pocaznoi, D., Calmet, A., Etcheverry, L., Erable, B. & Bergel, A. 2012. Stainless steel is a promising
electrode material for anodes of microbial fuel cells. Energy
and Environmental Science 5(11): 9645-9652.
Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. 2015. Microbial fuel cell as new technology
for bioelectricity generation: A review. Alexandria Engineering
Journal 54(3): 745-756.
Rosenbaum, M.,
Aulenta, F., Villano, M. & Angenent, L.T. 2011. Cathodes as electron donors for microbial metabolism:
Which extracellular electron transfer mechanisms are involved?. Bioresource Technology
102(1): 324-333.
Sahrani, F.K., Aziz,
M., Ibrahim, Z. & Yahya, A. 2008. Open circuit potential study of
stainless steel in environment containing marine sulphate-reducing
bacteria. Sains Malaysiana
37(4): 359-364.
Saito, T., Mehanna, M., Wang, X., Cusick, R.D.,
Feng, Y., Hickner, M.A. & Logan, B.E.
2011. Effect of nitrogen
addition on the performance of microbial fuel cell anodes.
Bioresource Technology 102(1): 395-398.
Santoro, C., Arbizzani, C., Erable, B. &
Ieropoulos, I. 2017. Microbial fuel cells: From fundamentals to applications.
A review. Journal of Power Sources 356:
225-244.
Saratale, R.G., Saratale,
G.D., Pugazhendhi, A., Zhen, G., Kumar,
G., Kadier, A. & Sivagurunathan,
P. 2017. Microbiome involved in microbial electrochemical systems
(MESs): A review. Chemosphere 177: 176-188.
Selemboa, P.A., Merrill,
M.D. & Logan, B.E. 2009. The use of stainless steel and nickel alloys as low-cost
cathodes in microbial electrolysis cells. Journal of Power Sources
190: 271-278.
Shi, L., Dong,
H., Reguera, G., Beyenal,
H., Lu, A., Liu, J., Yu, H.Q. & Fredrickson, J.K. 2016. Extracellular
electron transfer mechanisms between microorganisms and minerals.
Nature Reviews Microbiology 14: 651-662.
Sonawane, J.M., Yadav,
A., Ghosh, P.C. & Adeloju, S.B. 2017. Recent advances in the development
and utilization of modern anode materials for high performance microbial
fuel cells. Biosensors and Bioelectronics 90: 558-576.
Song, H.L., Zhu,
Y. & Li, J. 2015.
Electron transfer mechanisms, characteristics
and applications of biological cathode microbial fuel cells-a mini
review. Arabian Journal of Chemistry https://doi.org/10.1016/j.arabjc.2015.01.008.
Strycharz, S.M., Malanoski,
A.P., Snider, R.M., Yi, H., Lovley, D.R.
& Tender, L.M. 2011. Application of cyclic voltammetry to investigate
enhanced catalytic current generation by biofilm-modified anodes
of Geobacter sulfurreducens
strain DL1 vs. variant strain KN400. Energy and
Environmental Science 4: 896-913.
Sun, H., Xu, S.,
Zhuang, G. & Zhuang, X. 2016. Performance and recent improvement in microbial fuel
cells for simultaneous carbon and nitrogen removal: A review. Journal
of Environmental Sciences 39: 242-248.
Uria, N., Ferrera, I. & Mas, J. 2017. Electrochemical performance and
microbial community profiles in microbial fuel cells in relation
to electron transfer mechanisms. BMC Microbiology 17: 208.
Wang, C. &
Ma, J. 2016.
Applications of graphene-modified electrodes in microbial fuel cells.
Materials 807(9): 1-28.
Wei, J., Liang,
P. & Huang, X. 2011.
Recent progress in electrodes for microbial fuel
cells. Bioresource Technology
102(20): 9335-9344.
Yamashita, T.,
Ishida, M., Asakawa, S., Kanamori,
H., Sasaki, H., Ogino, A., Katayose,
Y., Hatta, T. & Yokoyama, H. 2016. Enhanced electrical power generation
using flame-oxidized stainless steel anode in microbial fuel cells
and the anodic community structure. Biotechnology for
Biofuels 9(1): 62-68.
Yuan, Y., Zhao,
B., Shungui, Z., Zhong,
S. & Zhuang, L. 2011.
Electrocatalytic activity of anodic biofilm
responses to pH changes in microbial fuel cells. Bioresource
Technology 102(13): 6887-6891.
Zhang, R.E., Liu,
L. & Ying, C.Y. 2013.
Effect of ph on the
performance of the anode in microbial fuel cells. Advanced
Materials Research 608: 884-888.
Zhao, Q., Yu, H., Zhang, W., Kabutey, F.T., Jiang, J., Zhang, Y., Wang, K. & Ding,
J. 2017. Microbial fuel cell with high content solid wastes as substrates:
A review. Frontiers of Environmental Science and Engineering
11(2): 13.
Zheng, S., Yang, F. & Chen,
S. 2015. Binder-free carbon black/stainless steel
mesh composite electrode for high-performance anode in microbial
fuel cells. Journal of Power Sources 284: 252-257.
Zhu, X.P. &
Logan, B. 2014.
Copper anode corrosion affects power generation in microbial fuel
cells. Chemical Technology and Biotechnology 89(3): 471-474.
*Corresponding author;
email: mimihani@ukm.edu.my
|