Sains Malaysiana 47(1)(2018): 109–115

http://dx.doi.org/10.17576/jsm-2018-4701-13

 

Production of Biodiesel from Palm Fatty Acid Distillate by Microwave-Assisted Sulfonated Glucose Acid Catalyst

(Penghasilan Biodiesel daripada Sulingan Asid Kelapa Sawit Menggunakan Pemangkin

Asid Glukosa Bersulfonat Secara Ketuhar Gelombang Mikro)

 

NUR NAZLINA SAIMON, HENG KHUAN EU, ANWAR JOHARI, NORZITA NGADI, MAZURA JUSOH & ZAKI YAMANI ZAKARIA*

 

Chemical Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 26 March 2017/Accepted: 9 June 2017

 

ABSTRACT

Biodiesel, one of the renewable energy sources has gained attention for decades as the alternative fuel due to its remarkable properties. However, there are several drawbacks from the industrial production of biodiesel such as the spike in the production cost, environmental issues related to the usage of homogeneous catalyst and profitability in long term. One of the solutions to eliminate the problem is by utilizing low cost starting material such as palm fatty acid distillate (PFAD). PFAD is a byproduct from the refining of crude palm oil and abundantly available. Esterification of PFAD to biodiesel will be much easier with the presence of heterogeneous acid catalyst. Most of acid catalyst preparation involves series of heating process using conventional method. In this study, microwave was utilized in catalyst preparation, significantly reducing the reaction time from conventional heating method. The catalyst produced was characterized using X-Ray Diffraction (XRD), Brunauer Emmet and Teller (BET), Scanning Electron Microscopy (SEM), Temperature-Programmed Desorption - Ammonia (TPD-NH3) and Fourier Transform Infrared (FTIR) while percentage yield and conversion of the PFAD were analysed by gas chromatography - flame ionization detector (GC-FID) and acid-base titration, respectively. It has been demonstrated that the percentage yield of biodiesel from the PFAD by employing sulfonated glucose acid catalyst (SGAC) reached 98.23% under the following conditions: molar ratio of methanol to PFAD of 10:1, catalyst loading of 2.5% and reaction temperature of 70oC. The microwave-assisted SGAC showed its potential to replace the SGAC produced via conventional heating method.

 

Keywords: Biodiesel; microwave-assisted; PFAD; sulfonated glucose acid catalyst

 

ABSTRAK

Biodiesel, salah satu daripada sumber tenaga boleh diperbaharui telah mendapat perhatian selama beberapa dekad ini sebagai bahan bakar alternatif kerana sifat luar biasanya. Walau bagaimanapun, terdapat beberapa halangan yang dihadapi oleh industri penghasilan biodiesel seperti kenaikan dalam kos pengeluaran, isu alam sekitar yang berkaitan dengan penggunaan pemangkin homogen serta keuntungan dalam jangka masa panjang. Untuk menyelesaikan isu kos pengeluaran adalah melalui penggunaan bahan mentah kos rendah seperti sulingan asid lemak sawit (PFAD). PFAD adalah hasil sampingan bernilai rendah daripada penapisan minyak sawit mentah dan terhasil dalam kuantiti yang banyak. Esterifikasi PFAD kepada biodiesel menjadi lebih mudah dengan kehadiran pemangkin asid heterogen. Kebanyakan cara penyediaan pemangkin berasid melibatkan beberapa siri pemanasan menggunakan kaedah konvensional. Ketuhar gelombang mikro digunakan dalam penyediaan pemangkin supaya dapat mengurangkan masa reaksi daripada kaedah pemanasan konvensional. Pemangkin yang dihasilkan dicirikan menggunakan pembelauan sinar X (XRD), Brunauer Emmet dan Teller (BET), mikroskopi elektron imbasan (SEM), program suhu penyahserapan - ammonia (TPD-NH3) dan transformasi Fourier Inframerah (FTIR) manakala peratus keputusan dan penukaran PFAD masing-masing telah dianalisis oleh gas kromatografi - nyalaan pengesan pengionan (GC-FID) dan penitratan asid-alkali. Hasil kajian menunjukkan bahawa hasil peratusan biodiesel daripada PFAD dengan menggunakan pemangkin asid glukosa bersulfonat (SGAC) mencapai 98.23% di bawah kondisi berikut: Nisbah molar metanol : PFAD is 10: 1, penggunaan pemangkin sebanyak 2.5 % bt. dan suhu tindak balas 70°C. SGAC yang dihasilkan melalui pemanasan ketuhar gelombang mikro menunjukkan potensi untuk menggantikan SGAC yang dihasilkan melalui kaedah pemanasan konvensional.

 

Kata kunci: Bantuan ketuhar gelombang mikro; biodiesel; pemangkin asid glukosa bersulfonat; PFAD

REFERENCES

Abreu, F.R., Alves, M.B., Macêdo, C.C.S., Zara, L.F. & Suarez, P.A.Z. 2005. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction. Journal of Molecular Catalysis A: Chemical 227(1- 2): 263-267.

Achten, W.M.J., Verchot, L., Franken, Y.J., Mathijs, E., Singh, V.P., Aerts, R. & Muys, B. 2008. Jatropha bio-diesel production and use. Biomass and Bioenergy 32(12): 1063- 1084.

Ang, G.T., Ooi, S.N., Tan, K.T., Lee, K.T. & Mohamed, A.R. 2015. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction. Energy Conversion and Management 99: 242-251.

Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R. & Sulaiman, N.M.N. 2012. Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews 16(5): 3275-3285.

Berrios, M., Siles, J., Martín, M.A. & Martín, A. 2007. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86(15): 2383-2388.

Chongkhong, S., Tongurai, C., Chetpattananondh, P. & Bunyakan, C. 2007. Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy 31(8): 563-568.

Di Serio, M., Tesser, R., Pengmei, L. & Santacesaria, E. 2007. Heterogeneous catalysts for biodiesel production. Energy & Fuels 22(1): 207-217.

Helwani, Z., Othman, M.R., Aziz, N., Kim, J. & Fernando, W.J.N. 2009. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General 363(1-2): 1-10.

Kanitkar, A., Balasubramanian, S., Lima, M. & Boldor, D. 2011. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresource Technology 102(17): 7896-7902.

Lam, M.K. & Lee, K.T. 2011. Chapter 15 - Production of biodiesel using palm oil A2 -, In Biofuels, edited by Pandey, A., Larroche, C., Ricke S.C., Dussap, C-G. & Gnansounou, E. Amsterdam: Academic Press. pp. 353-374.

Lokman, I.M., Rashid, U. & Taufiq-Yap, Y.H. 2015. Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese Journal of Chemical Engineering 23(11): 1857-1864.

Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H. & Yunus, R. 2015. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy 81: 347-354.

Lou, W.Y., Zong, M.H. & Duan, Z.Q. 2008. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology 99(18): 8752-8758.

Luyben, W.L. 2000. Impact of reaction activation energy on plantwide control structures in adiabatic tubular reactor systems. Industrial & Engineering Chemistry Research 39(7): 2345-2354.

Malaysian Palm Oil Board, M. 2009. Production Technology of Biodiesel from Palm Fatty Acid Distillate (PFAD). http:// palmoilis.mpob.gov.my/publications/TOT/TT-430.pdf (Accessed on Feb, 2017).

Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D. & Wang, J. 2009. Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Processing Technology 90(7): 1002-1008.

Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry 9(5): 434-437.

Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry 9(5): 434-437.

 

 

*Corresponding author; email: zakiyamani@utm.my

 

 

 

 

previous