Sains Malaysiana 47(1)(2018): 109–115
http://dx.doi.org/10.17576/jsm-2018-4701-13
Production of Biodiesel from Palm
Fatty Acid Distillate by Microwave-Assisted Sulfonated Glucose Acid Catalyst
(Penghasilan Biodiesel daripada Sulingan Asid Kelapa Sawit Menggunakan Pemangkin
Asid Glukosa Bersulfonat Secara Ketuhar Gelombang Mikro)
NUR NAZLINA SAIMON, HENG KHUAN EU, ANWAR JOHARI, NORZITA NGADI, MAZURA JUSOH
& ZAKI YAMANI ZAKARIA*
Chemical
Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim,
Malaysia
Received:
26 March 2017/Accepted: 9 June 2017
ABSTRACT
Biodiesel, one of the
renewable energy sources has gained attention for decades as the alternative
fuel due to its remarkable properties. However, there are several drawbacks
from the industrial production of biodiesel such as the spike in the production
cost, environmental issues related to the usage of homogeneous catalyst and
profitability in long term. One of the solutions to eliminate the problem is by
utilizing low cost starting material such as palm fatty acid distillate (PFAD). PFAD is a byproduct from the refining of crude palm oil and abundantly
available. Esterification of PFAD to biodiesel will be much
easier with the presence of heterogeneous acid catalyst. Most of acid catalyst
preparation involves series of heating process using conventional method. In
this study, microwave was utilized in catalyst preparation, significantly
reducing the reaction time from conventional heating method. The catalyst
produced was characterized using X-Ray Diffraction (XRD), Brunauer Emmet and Teller (BET),
Scanning Electron Microscopy (SEM), Temperature-Programmed
Desorption - Ammonia (TPD-NH3)
and Fourier Transform Infrared (FTIR) while percentage yield
and conversion of the PFAD were analysed by gas chromatography - flame ionization detector (GC-FID)
and acid-base titration, respectively. It has been demonstrated that the
percentage yield of biodiesel from the PFAD by employing sulfonated
glucose acid catalyst (SGAC) reached 98.23% under the
following conditions: molar ratio of methanol to PFAD of
10:1, catalyst loading of 2.5% and reaction temperature of 70oC.
The microwave-assisted SGAC showed its potential to replace
the SGAC produced via conventional heating method.
Keywords: Biodiesel;
microwave-assisted; PFAD; sulfonated glucose acid catalyst
ABSTRAK
Biodiesel, salah satu daripada sumber tenaga boleh diperbaharui telah mendapat perhatian selama beberapa dekad ini sebagai bahan bakar alternatif kerana sifat luar biasanya. Walau bagaimanapun, terdapat beberapa halangan yang dihadapi oleh industri penghasilan biodiesel seperti kenaikan dalam kos pengeluaran, isu alam sekitar yang berkaitan dengan penggunaan pemangkin homogen serta keuntungan dalam jangka masa panjang. Untuk menyelesaikan isu kos pengeluaran adalah melalui penggunaan bahan mentah kos rendah seperti sulingan asid lemak sawit (PFAD). PFAD adalah hasil sampingan bernilai rendah daripada penapisan minyak sawit mentah dan terhasil dalam kuantiti yang banyak. Esterifikasi PFAD kepada biodiesel menjadi lebih mudah dengan kehadiran pemangkin asid heterogen. Kebanyakan cara penyediaan pemangkin berasid melibatkan beberapa siri pemanasan menggunakan kaedah konvensional. Ketuhar gelombang mikro digunakan dalam penyediaan pemangkin supaya dapat mengurangkan masa reaksi daripada kaedah pemanasan konvensional. Pemangkin yang dihasilkan dicirikan menggunakan pembelauan sinar X (XRD), Brunauer Emmet dan Teller (BET), mikroskopi elektron imbasan (SEM), program suhu penyahserapan - ammonia (TPD-NH3) dan transformasi Fourier Inframerah (FTIR) manakala peratus keputusan dan penukaran PFAD masing-masing telah dianalisis oleh gas kromatografi - nyalaan pengesan pengionan (GC-FID) dan penitratan asid-alkali. Hasil kajian menunjukkan bahawa hasil peratusan biodiesel daripada PFAD dengan menggunakan pemangkin asid glukosa bersulfonat (SGAC) mencapai 98.23% di bawah kondisi berikut: Nisbah molar metanol : PFAD is 10: 1, penggunaan pemangkin sebanyak 2.5 % bt. dan suhu tindak balas 70°C. SGAC yang dihasilkan melalui pemanasan ketuhar gelombang mikro menunjukkan potensi untuk menggantikan SGAC yang dihasilkan melalui kaedah pemanasan konvensional.
Kata kunci: Bantuan ketuhar gelombang mikro; biodiesel; pemangkin asid glukosa bersulfonat; PFAD
REFERENCES
Abreu, F.R., Alves, M.B., Macêdo,
C.C.S., Zara, L.F. & Suarez, P.A.Z. 2005. New
multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction. Journal of Molecular
Catalysis A: Chemical 227(1- 2): 263-267.
Achten, W.M.J., Verchot,
L., Franken, Y.J., Mathijs, E., Singh, V.P., Aerts, R. & Muys, B. 2008. Jatropha bio-diesel production
and use. Biomass and Bioenergy 32(12): 1063- 1084.
Ang, G.T., Ooi, S.N., Tan, K.T., Lee, K.T. & Mohamed, A.R. 2015. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via
supercritical reaction. Energy Conversion and Management 99:
242-251.
Atadashi,
I.M., Aroua, M.K., Abdul Aziz, A.R. & Sulaiman, N.M.N. 2012. Production
of biodiesel using high free fatty acid feedstocks. Renewable and
Sustainable Energy Reviews 16(5): 3275-3285.
Berrios, M., Siles, J., Martín, M.A.
& Martín, A. 2007. A kinetic study of
the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86(15):
2383-2388.
Chongkhong,
S., Tongurai, C., Chetpattananondh,
P. & Bunyakan, C. 2007. Biodiesel production by esterification of palm fatty acid
distillate. Biomass and Bioenergy 31(8): 563-568.
Di Serio, M., Tesser, R., Pengmei, L. & Santacesaria,
E. 2007. Heterogeneous catalysts for biodiesel
production. Energy & Fuels 22(1): 207-217.
Helwani,
Z., Othman, M.R., Aziz, N., Kim, J. & Fernando, W.J.N. 2009. Solid heterogeneous catalysts for transesterification of triglycerides with
methanol: A review. Applied Catalysis A: General 363(1-2): 1-10.
Kanitkar,
A., Balasubramanian, S., Lima, M. & Boldor, D. 2011. A
critical comparison of methyl and ethyl esters production from soybean and rice
bran oil in the presence of microwaves. Bioresource Technology 102(17): 7896-7902.
Lam, M.K. & Lee, K.T. 2011. Chapter 15 - Production of biodiesel using palm oil A2 -, In Biofuels, edited
by Pandey, A., Larroche, C., Ricke S.C., Dussap, C-G. & Gnansounou,
E. Amsterdam: Academic Press. pp. 353-374.
Lokman,
I.M., Rashid, U. & Taufiq-Yap, Y.H. 2015. Production of biodiesel from palm fatty acid distillate using
sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese
Journal of Chemical Engineering 23(11): 1857-1864.
Lokman,
I.M., Rashid, U., Taufiq-Yap, Y.H. & Yunus, R. 2015. Methyl ester production
from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy 81: 347-354.
Lou, W.Y., Zong, M.H. & Duan, Z.Q. 2008. Efficient production of
biodiesel from high free fatty acid-containing waste oils using various
carbohydrate-derived solid acid catalysts. Bioresource Technology 99(18): 8752-8758.
Luyben, W.L. 2000. Impact of
reaction activation energy on plantwide control
structures in adiabatic tubular reactor systems. Industrial &
Engineering Chemistry Research 39(7): 2345-2354.
Malaysian
Palm Oil Board, M. 2009. Production Technology of
Biodiesel from Palm Fatty Acid Distillate (PFAD). http://
palmoilis.mpob.gov.my/publications/TOT/TT-430.pdf (Accessed on Feb, 2017).
Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D. & Wang, J.
2009. Synthesis of biodiesel from cottonseed oil and
methanol using a carbon-based solid acid catalyst. Fuel Processing
Technology 90(7): 1002-1008.
Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and its use for highly efficient
production of biodiesel. Green Chemistry 9(5): 434-437.
Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and its use for highly efficient
production of biodiesel. Green Chemistry 9(5): 434-437.
*Corresponding author;
email: zakiyamani@utm.my
|