Sains Malaysiana 47(1)(2018): 157–168

http://dx.doi.org/10.17576/jsm-2018-4701-19

 

Influence of Precursor Concentration and Temperature on the Formation of Nanosilver in Chemical Reduction Method

(Pengaruh Kepekatan Pelopor dan Suhu terhadap Pembentukan Nanoargentum dalam Kaedah Pengurangan Kimia)

 

N. AHMAD1, B.C. ANG2*, M.A. AMALINA1 & C.W. BONG3,4

 

1Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Center of Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Institute of Biological Sciences, (Microbiology Unit), Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Federal Territory, Malaysia

 

4Institute of Ocean and Earth Science (IOES), University of Malaya, 50603, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 31 December 2016/Accepted: 8 June 2017

 

ABSTRACT

Nanosilver particles (NSPs) were produced by the reduction of silver nitrate using glucose as reducer, poly (vinyl pyrrolidone) as stabilizer and sodium hydroxide as reaction enhancer. Two parameters were investigated which are silver nitrate concentration (0.1 M, 0.5 M and 1.0 M) and reaction temperature (60°C and 80°C). Through spectral analysis using ultraviolet-visible spectrophotometer (UV-vis), all the samples recorded the maximum peak in the range of 384-411 nm which verified the formation of NSPs. TEM images showed the nanoparticles have spherical shape with the size range of 25-39 nm. Particle size and zeta potential analysis recorded the hydrodynamic size of nanoparticles in the range of 85-105 nm and the zeta potential ranging from -25 to -30 mV, under the pH value of 8. X-ray diffraction analysis showed that the NSPs have face center cubic (FCC) structure. All the produced NSPs surprisingly showed ferromagnetic-like behaviour based on the magnetization curves. FTIR result confirmed the presence of poly (vinyl pyrrolidone) on the NSPs surface. Furthermore, at the reaction temperature 60°C, the crystallite size, physical size as well as hydrodynamic size increased as the precursor concentration increased from 0.1 M to 0.5 M. However, as the precursor concentration further increases to 1.0 M, the size become smaller due to incomplete reduction process. In contrast, at 80°C, the sizes was gradually increased as the precursor concentration increases up to 1.0 M. In terms of controlled precursor concentration, the crystallite size and physical size become smaller as the temperature increases.

 

Keywords: Chemical reduction; nanosilver; precursor concentration; reaction temperature

 

ABSTRAK

Zarah nanoargentum (NSPs) telah dihasilkan oleh pengurangan argentum nitrat menggunakan glukosa sebagai pengecil, poli (vinil pirolidon) sebagai penstabil dan natrium hidroksida sebagai penggalak tindak balas. Dua parameter yang dikaji merangkumi kepekatan argentum nitrat (0.1 M, 0.5 M dan 1.0 M) dan suhu tindak balas (60°C dan 80°C). Melalui analisis spektrum menggunakan sinar ultra-ungu boleh nampak spektrofotometer (UV-vis), puncak maksimum kesemua sampel direkodkan dalam lingkungan 384-411 nm yang mengesahkan pembentukan NSPs. Imej-imej TEM menunjukkan nanozarah mempunyai bentuk sfera dengan julat saiz 25-39 nm. Analisis saiz zarah dan zeta potential mencatatkan saiz hidrodinamik nanozarah dalam lingkungan 85-105 nm dan zeta potential meliputi -25 hingga -30 mV, di bawah nilai pH 8. Analisis pembelauan sinar-X mendedahkan bahawa NSPs mempunyai struktur face center cubic (FCC). Tanpa dijangka kesemua NSPs yang dihasilkan menunjukkan kelakuan seperti feromagnetik berdasarkan lengkung pemagnetan. Transformasi Fourier inframerah spektrometer (FTIR) mengesahkan kehadiran poli (vinil pirolidon) di permukaan NSPs. Tambahan pula, pada suhu tindak balas 60°C, saiz kumin hablur, saiz fizikal serta saiz hidrodinamik meningkat apabila kepekatan pelopor meningkat daripada 0.1 M ke 0.5 M. Walau bagaimanapun, apabila kepekatan pelopor terus meningkat kepada 1.0 M, saiz menjadi lebih kecil disebabkan proses pengurangan tidak sempurna. Sebaliknya, di 80°C, saiz beransur-ansur meningkat apabila kepekatan pelopor meningkat sehingga 1.0 M. Daripada segi kepekatan pelopor yang terkawal, saiz kumin hablur dan saiz fizikal menjadi lebih kecil apabila suhu bertambah.

 

Kata kunci: Kepekatan pelopor; nanoargentum; pengurangan kimia; suhu tindak balas

REFERENCES

Abou El-Nour, K.M.M., Eftaiha, A.A., Al-Warthan, A. & Ammar, R.A.A. 2010. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry 3(3): 135-140.

Agnihotri, S., Mukherji, S. & Mukherji, S. 2014. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances 4(8): 3974-3983.

Ahmad, T., Wani, I.A., Ahmed, J. & Al-Hartomy, O.A. 2014. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Applied Nanoscience 4(4): 491-498.

Ajitha, B., Divya, A., Harish, G.S. & Sreedhara, R.D. 2013. The influence of silver precursor concentration on size of silver nanoparticles grown by soft chemical route. Research Journal of Physical Sciences 1(7): 11-14.

Alahmad, A. 2014. Preparation and characterization of silver nanoparticles. International Journal of ChemTech Research 6(1): 450-459.

Allen, E., Henshaw, J. & Smith, P. 2001. A review of particle agglomeration. U.S. Department of Energy. pp. 1-42.

Amany, A., El-Rab, S.F.G. & Gad, F. 2012. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der. Pharma. Chemica.4(1): 53-65.

Bell, W.C. & Myrick, M.L. 2001. Preparation and characterization of nanoscale silver colloids by two novel synthetic routes. Journal of Colloid and Interface Science 242(2): 300-305.

Bhui, D.K., Bar, H., Sarkar, P., Sahoo, G.P., De, S.P. & Misra, A. 2009. Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal of Molecular Liquids 145(1): 33-37.

Bryaskova, R., Pencheva, D., Nikolov, S. & Kantardjiev, T. 2011. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology 4(4): 185-191.

Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W.S., Teixeira, J.A. & Vicente, A.A. 2011. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polymers 85(3): 522-528.

Chiad, B., Ali, N., Sadik, Z. & Al-Awadi, S. 2013. Study the optimum conditions of synthesis AgNP by chemical reduction method. Journal of Kerbala University 11(4): 40-46.

Choo, H.P., Liew, K.Y. & Liu, H. 2002. Factors affecting the size of polymer stabilized Pd nanoparticles. Journal of Materials Chemistry 12: 934-937.

Darroudi, M., Ahmad, M.B., Abdullah, A.H., Ibrahim, N.A. & Shameli, K. 2010. Effect of accelerator in green synthesis of silver nanoparticles. International Journal of Molecular Sciences 11(10): 3898-3905.

Eid, C., Assaf, E., Habchi, R., Miele, P. & Bechelany, M. 2015. Tunable properties of GO-doped CoFe2O4 nanofibers elaborated by electrospinning. RSC Advances 5: 97849- 97854.

Fayaz, A., Balaji, K., Kalaichelvan, P. & Venkatesan, R. 2009. Fungal based synthesis of silver nanoparticles - An effect of temperature on the size of particles. Colloids and Surfaces B: Biointerfaces74(1): 123-126.

Foliatini, F., Yulizar, Y. & Hafizah, M.A.E. 2015. The synthesis of alginate-capped silver nanoparticles under microwave irradiation. Journal of Mathematical and Fundamental Sciences 47(1): 31-50.

Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X. & Xing, M.M.Q. 2014. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. International Journal of Nanomedicine 9: 2399-2407.

Hassanien, A.S. & Akl, A.A. 2015. Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films. Physica B: Condensed Matter 473: 11-19.

Hee, D.J. & Jinki, J. 2007. The effects of temperature on particle size in the gas-phase production of TiO2. Aerosol Science and Technology 23(4): 553-560.

Janardhanan, R., Karuppaiah, M., Hebalkar, N. & Rao, T.N. 2009. Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12): 2522-2530.

Jiang, X., Chen, W., Chen, C., Xiong, S. & Yu, A. 2011. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 6(1): 32.

Jiang, H., Moon, K.S., Zhang, Z., Pothukuchi, S. & Wong, C. 2006. Variable frequency microwave synthesis of silver nanoparticles. Journal of Nanoparticle Research 8(1): 117- 124.

Jo, Y., Jung, M.H., Kyum, M.C., Park, K.H. & Kim, Y.N. 2006. Nano-sized effect on the magnetic properties of Ag clusters. Journal of Magnetics 11(4): 160-163.

Kheybari, S., Samadi, N., Hosseini, S.V., Fazeli, A. & Fazeli, M.R. 2010. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. DARU Journal of Pharmaceutical Sciences 18(3): 168-172.

Lah, N.A.C. & Johan, M.R. 2011. Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 surfactant. Applied Surface Science 257(17): 7494-7500.

Landage, S., Wasif, A. & Dhuppe, P. 2014. Synthesis of nanosilver using chemical reduction methods. International Journal of Advanced Research in Engineering and Applied Sciences 3(5): 14-22.

Lanje, A.S., Sharma, S.J. & Pode, R.B. 2010. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2(3): 478-483.

Lanje, A.S., Sharma, S.J. & Pode, R.B. 2010. Magnetic and electrical properties of nickel nanoparticles prepared by hydrazine reduction method. Arch. Phys. Res. 1(1): 49-56.

Li, Z.H., Wang, Y.W. & Yu, Q.Q. 2010. Significant parameters in the optimization of synthesis of silver nanoparticles by chemical reduction method. Journal of Materials Engineering and Performance 19(2): 252-256.

Liu, H., Zhang, B., Shi, H., Tang, Y., Jiao, K. & Fu, X. 2008. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. Journal of Materials Chemistry 18: 2573-2580.

Lu, W., Liao, F., Luo, Y., Chang, G. & Sun, X. 2011. Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochimica Acta56(5): 2295-2298.

Nersisyan, H., Lee, J., Son, H., Won, C. & Maeng, D. 2003. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Materials Research Bulletin 38(6): 949-956.

Pulit, J., Banach, M. & Kowalski, Z. 2011. Nanosilver - making difficult decisions. The International Council on Nanotechnologies 18(2): 185-195.

Shin, H.S., Yang, H.J., Kim, S.B. & Lee, M.S. 2004. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. Journal of Colloid and Interface Science 274(1): 89-94.

Sibiya, P. & Moloto, M. 2014. Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles. Chalcogenide Lett. 11: 577-588.

Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A. & Guobienė, A. 2006. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater. Sci.-Medzg. 12: 287-291.

Sun, X., Dong, S. & Wang, E. 2004. One-step preparation and characterization of poly (propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37(19): 7105-7108.

Suwatthanarak, T., Than-ardna, B., Danwanichakul, D. & Danwanichakul, P. 2016. Synthesis of silver nanoparticles in skim natural rubber latex at room temperature. Materials Letters 168: 31-35.

Wang, H., Qiao, X., Chen, J. & Ding, S. 2005. Preparation of silver nanoparticles by chemical reduction method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 256(2-3): 111-115.

Wang, H., Qiao, X., Chen, J., Wang, X. & Ding, S. 2005. Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics 94(2): 449-453.

Zhang, W., Qiao, X. & Chen, J. 2007. Synthesis of silver nanoparticles-Effects of concerned parameters in water/ oil microemulsion. Materials Science and Engineering: B 142(1): 1-15.

Zhang, Z., Zhao, B. & Hu, L. 1996. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry 121(1): 105-110.

 

 

*Corresponding author; email: amelynang@um.edu.my

 

 

 

previous