Sains Malaysiana 47(1)(2018): 157–168
http://dx.doi.org/10.17576/jsm-2018-4701-19
Influence of Precursor
Concentration and Temperature on the Formation of Nanosilver in Chemical Reduction Method
(Pengaruh Kepekatan Pelopor dan Suhu terhadap Pembentukan Nanoargentum dalam Kaedah Pengurangan Kimia)
N. AHMAD1, B.C. ANG2*, M.A. AMALINA1 & C.W. BONG3,4
1Department of
Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Center of Advanced Materials, Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
3Institute of Biological Sciences,
(Microbiology Unit), Faculty of Science, University of Malaya, 50603, Kuala
Lumpur, Federal Territory, Malaysia
4Institute of Ocean and Earth
Science (IOES), University of Malaya, 50603, Kuala Lumpur, Federal Territory, Malaysia
Received: 31 December 2016/Accepted:
8 June 2017
ABSTRACT
Nanosilver particles (NSPs) were produced by the reduction of silver nitrate
using glucose as reducer, poly (vinyl pyrrolidone) as
stabilizer and sodium hydroxide as reaction enhancer. Two parameters were
investigated which are silver nitrate concentration (0.1 M, 0.5 M and 1.0 M)
and reaction temperature (60°C and 80°C).
Through spectral analysis using ultraviolet-visible spectrophotometer (UV-vis),
all the samples recorded the maximum peak in the range of 384-411 nm which
verified the formation of NSPs. TEM images
showed the nanoparticles have spherical shape with the size range of 25-39 nm.
Particle size and zeta potential analysis recorded the hydrodynamic size of
nanoparticles in the range of 85-105 nm and the zeta potential ranging from -25
to -30 mV, under the pH value of 8. X-ray diffraction analysis showed that the NSPs
have face center cubic (FCC) structure. All the produced NSPs
surprisingly showed ferromagnetic-like behaviour based on the magnetization curves. FTIR result confirmed the
presence of poly (vinyl pyrrolidone) on the NSPs
surface. Furthermore, at the reaction temperature 60°C, the crystallite size,
physical size as well as hydrodynamic size increased as the precursor
concentration increased from 0.1 M to 0.5 M. However, as the precursor
concentration further increases to 1.0 M, the size become smaller due to
incomplete reduction process. In contrast, at 80°C, the sizes
was gradually increased as the precursor concentration increases up to
1.0 M. In terms of controlled precursor concentration, the crystallite size and
physical size become smaller as the temperature increases.
Keywords: Chemical
reduction; nanosilver; precursor concentration;
reaction temperature
ABSTRAK
Zarah nanoargentum (NSPs) telah dihasilkan oleh pengurangan
argentum nitrat menggunakan glukosa sebagai pengecil, poli (vinil
pirolidon) sebagai penstabil dan natrium hidroksida sebagai penggalak
tindak balas. Dua parameter yang dikaji merangkumi kepekatan argentum
nitrat (0.1 M, 0.5 M dan 1.0 M) dan suhu tindak balas (60°C dan 80°C). Melalui analisis spektrum menggunakan
sinar ultra-ungu boleh nampak spektrofotometer (UV-vis), puncak maksimum kesemua
sampel direkodkan dalam lingkungan 384-411 nm yang mengesahkan pembentukan
NSPs. Imej-imej TEM menunjukkan nanozarah mempunyai
bentuk sfera dengan julat saiz 25-39 nm. Analisis saiz zarah dan
zeta potential mencatatkan saiz hidrodinamik nanozarah dalam lingkungan
85-105 nm dan zeta potential meliputi -25 hingga -30 mV, di bawah
nilai pH 8. Analisis pembelauan sinar-X mendedahkan bahawa NSPs mempunyai struktur face
center cubic (FCC). Tanpa dijangka kesemua NSPs
yang dihasilkan menunjukkan kelakuan seperti feromagnetik berdasarkan
lengkung pemagnetan. Transformasi Fourier inframerah spektrometer
(FTIR)
mengesahkan kehadiran poli (vinil pirolidon) di permukaan NSPs.
Tambahan pula, pada suhu tindak balas 60°C, saiz kumin hablur,
saiz fizikal serta saiz hidrodinamik meningkat apabila kepekatan
pelopor meningkat daripada 0.1 M ke 0.5 M. Walau bagaimanapun, apabila
kepekatan pelopor terus meningkat kepada 1.0 M, saiz menjadi lebih
kecil disebabkan proses pengurangan tidak sempurna. Sebaliknya,
di 80°C, saiz beransur-ansur meningkat apabila kepekatan pelopor
meningkat sehingga 1.0 M. Daripada segi kepekatan pelopor yang terkawal,
saiz kumin hablur dan saiz fizikal menjadi lebih kecil apabila suhu
bertambah.
Kata kunci: Kepekatan pelopor; nanoargentum; pengurangan kimia; suhu tindak balas
REFERENCES
Abou El-Nour, K.M.M., Eftaiha,
A.A., Al-Warthan, A. & Ammar, R.A.A. 2010. Synthesis and applications of silver nanoparticles. Arabian
Journal of Chemistry 3(3): 135-140.
Agnihotri, S., Mukherji, S. & Mukherji, S.
2014. Size-controlled silver nanoparticles synthesized over the range 5-100 nm
using the same protocol and their antibacterial efficacy. RSC Advances 4(8):
3974-3983.
Ahmad,
T., Wani, I.A., Ahmed, J. & Al-Hartomy, O.A. 2014. Effect of gold ion concentration
on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Applied Nanoscience 4(4):
491-498.
Ajitha,
B., Divya, A., Harish, G.S. & Sreedhara,
R.D. 2013. The influence of silver precursor concentration on size of
silver nanoparticles grown by soft chemical route. Research Journal
of Physical Sciences 1(7): 11-14.
Alahmad,
A. 2014. Preparation and characterization of silver nanoparticles. International Journal of ChemTech Research 6(1):
450-459.
Allen, E.,
Henshaw, J. & Smith, P. 2001. A review of particle
agglomeration. U.S. Department of Energy. pp.
1-42.
Amany,
A., El-Rab, S.F.G. & Gad, F. 2012. Effect of reducing and protecting agents on size of silver
nanoparticles and their anti-bacterial activity. Der. Pharma. Chemica.4(1):
53-65.
Bell,
W.C. & Myrick, M.L. 2001. Preparation and characterization of
nanoscale silver colloids by two novel synthetic routes. Journal of Colloid
and Interface Science 242(2): 300-305.
Bhui, D.K., Bar, H.,
Sarkar, P., Sahoo, G.P., De, S.P. & Misra, A. 2009. Synthesis and UV-vis
spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal
of Molecular Liquids 145(1): 33-37.
Bryaskova,
R., Pencheva, D., Nikolov,
S. & Kantardjiev, T. 2011. Synthesis and
comparative study on the antimicrobial activity of hybrid materials based on
silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology 4(4):
185-191.
Carneiro-da-Cunha,
M.G., Cerqueira, M.A., Souza, B.W.S., Teixeira, J.A.
& Vicente, A.A. 2011. Influence of concentration, ionic strength and pH on zeta potential and mean
hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polymers 85(3): 522-528.
Chiad, B., Ali, N., Sadik, Z. & Al-Awadi, S. 2013. Study the optimum
conditions of synthesis AgNP by chemical reduction
method. Journal of Kerbala University 11(4):
40-46.
Choo,
H.P., Liew, K.Y. & Liu, H. 2002. Factors
affecting the size of polymer stabilized Pd nanoparticles. Journal of Materials Chemistry 12: 934-937.
Darroudi,
M., Ahmad, M.B., Abdullah, A.H., Ibrahim, N.A. & Shameli,
K. 2010. Effect of accelerator in green synthesis of silver
nanoparticles. International Journal of Molecular Sciences 11(10):
3898-3905.
Eid,
C., Assaf, E., Habchi, R.,
Miele, P. & Bechelany, M. 2015. Tunable properties of GO-doped CoFe2O4 nanofibers
elaborated by electrospinning. RSC Advances 5: 97849- 97854.
Fayaz,
A., Balaji, K., Kalaichelvan,
P. & Venkatesan, R. 2009. Fungal based
synthesis of silver nanoparticles - An effect of temperature on the size of
particles. Colloids and Surfaces B: Biointerfaces74(1):
123-126.
Foliatini,
F., Yulizar, Y. & Hafizah,
M.A.E. 2015. The synthesis of alginate-capped silver nanoparticles under
microwave irradiation. Journal of Mathematical and Fundamental
Sciences 47(1): 31-50.
Ge,
L., Li, Q., Wang, M., Ouyang, J., Li, X. & Xing, M.M.Q. 2014. Nanosilver particles in medical applications: Synthesis,
performance, and toxicity. International Journal of Nanomedicine 9:
2399-2407.
Hassanien,
A.S. & Akl, A.A. 2015. Crystal
imperfections and Mott parameters of sprayed nanostructure IrO2 thin films. Physica B: Condensed Matter 473: 11-19.
Hee,
D.J. & Jinki, J. 2007. The effects of temperature on particle size in the gas-phase
production of TiO2. Aerosol Science and
Technology 23(4): 553-560.
Janardhanan,
R., Karuppaiah, M., Hebalkar,
N. & Rao, T.N. 2009. Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12): 2522-2530.
Jiang,
X., Chen, W., Chen, C., Xiong, S. & Yu, A. 2011. Role of temperature in the growth of silver nanoparticles through a
synergetic reduction approach. Nanoscale Res. Lett. 6(1): 32.
Jiang,
H., Moon, K.S., Zhang, Z., Pothukuchi, S. & Wong,
C. 2006. Variable frequency microwave synthesis of silver
nanoparticles. Journal of Nanoparticle Research 8(1): 117- 124.
Jo,
Y., Jung, M.H., Kyum, M.C., Park, K.H. & Kim,
Y.N. 2006. Nano-sized effect on the magnetic properties of Ag clusters. Journal of
Magnetics 11(4): 160-163.
Kheybari,
S., Samadi, N., Hosseini, S.V., Fazeli,
A. & Fazeli, M.R. 2010. Synthesis and antimicrobial effects of silver nanoparticles
produced by chemical reduction method. DARU Journal of Pharmaceutical
Sciences 18(3): 168-172.
Lah,
N.A.C. & Johan, M.R. 2011. Facile shape control synthesis and
optical properties of silver nanoparticles stabilized by Daxad 19 surfactant. Applied Surface Science 257(17): 7494-7500.
Landage, S., Wasif, A. & Dhuppe, P. 2014. Synthesis of nanosilver using chemical
reduction methods. International Journal of Advanced Research in
Engineering and Applied Sciences 3(5): 14-22.
Lanje,
A.S., Sharma, S.J. & Pode, R.B. 2010. Synthesis of
silver nanoparticles: A safer alternative to conventional antimicrobial and
antibacterial agents. J. Chem. Pharm. Res. 2(3): 478-483.
Lanje,
A.S., Sharma, S.J. & Pode, R.B. 2010. Magnetic and electrical properties of nickel nanoparticles prepared
by hydrazine reduction method. Arch. Phys. Res. 1(1): 49-56.
Li,
Z.H., Wang, Y.W. & Yu, Q.Q. 2010. Significant
parameters in the optimization of synthesis of silver nanoparticles by chemical
reduction method. Journal of Materials Engineering and Performance 19(2):
252-256.
Liu,
H., Zhang, B., Shi, H., Tang, Y., Jiao, K. & Fu, X. 2008. Hydrothermal synthesis of monodisperse Ag2Se
nanoparticles in the presence of PVP and KI and their application as
oligonucleotide labels. Journal of Materials Chemistry 18: 2573-2580.
Lu,
W., Liao, F., Luo, Y., Chang, G. & Sun, X. 2011. Hydrothermal
synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochimica Acta56(5): 2295-2298.
Nersisyan,
H., Lee, J., Son, H., Won, C. & Maeng, D. 2003. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Materials
Research Bulletin 38(6): 949-956.
Pulit,
J., Banach, M. & Kowalski, Z. 2011. Nanosilver - making difficult decisions. The
International Council on Nanotechnologies 18(2): 185-195.
Shin,
H.S., Yang, H.J., Kim, S.B. & Lee, M.S. 2004. Mechanism of growth of colloidal silver nanoparticles stabilized by
polyvinyl pyrrolidone in γ-irradiated silver
nitrate solution. Journal of Colloid and Interface Science 274(1):
89-94.
Sibiya,
P. & Moloto, M. 2014. Effect of
precursor concentration and pH on the shape and size of starch capped silver
selenide (Ag2Se) nanoparticles. Chalcogenide Lett. 11: 577-588.
Šileikaitė,
A., Prosyčevas, I., Puišo,
J., Juraitis, A. & Guobienė,
A. 2006. Analysis of silver nanoparticles produced by chemical
reduction of silver salt solution. Mater. Sci.-Medzg. 12: 287-291.
Sun,
X., Dong, S. & Wang, E. 2004. One-step preparation
and characterization of poly (propyleneimine)
dendrimer-protected silver nanoclusters. Macromolecules 37(19):
7105-7108.
Suwatthanarak,
T., Than-ardna, B., Danwanichakul,
D. & Danwanichakul, P. 2016. Synthesis of silver nanoparticles in skim natural rubber latex at room
temperature. Materials Letters 168: 31-35.
Wang, H., Qiao, X., Chen, J. & Ding, S. 2005. Preparation
of silver nanoparticles by chemical reduction method. Colloids and
Surfaces A: Physicochemical and Engineering Aspects 256(2-3): 111-115.
Wang, H., Qiao, X., Chen, J., Wang, X. & Ding, S. 2005. Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics 94(2): 449-453.
Zhang,
W., Qiao, X. & Chen, J. 2007. Synthesis of silver nanoparticles-Effects of concerned parameters
in water/ oil microemulsion. Materials
Science and Engineering: B 142(1): 1-15.
Zhang,
Z., Zhao, B. & Hu, L. 1996. PVP protective
mechanism of ultrafine silver powder synthesized by chemical reduction
processes. Journal of Solid State Chemistry 121(1): 105-110.
*Corresponding
author; email: amelynang@um.edu.my
|