Sains Malaysiana 47(1)(2018): 35–49

http://dx.doi.org/10.17576/jsm-2018-4701-05

 

Removal of Heavy Metals from Wastewater using Date Palm as a Biosorbent: A Comparative Review

(Penyingkiran Logam Berat dari Air Kumbahan menggunakan Kurma sebagai Satu Bahan Bioserap: Satu Kajian Perbandingan)

 

M. SHAFIQ1, A.A. ALAZBA1,2 & M.T. AMIN1,3*

 

1Alamoudi Water Research Chair, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia

 

2Agricultural Engineering Department, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia

 

3Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan

 

Received: 12 March 2017/Accepted: 26 June 2017

 

ABSTRACT

The drawbacks associated with activated carbon, mainly cost, have resulted in the continuing search for inexpensive adsorbents easily and abundantly available as waste materials. The current review presents the results of using different forms of date palm (DP) waste as low-cost biosorbents, highlighting effects of contact time, pH, the dose and size of the adsorbent particles, initial metal concentrations and the effects of pre-treatment on the adsorption efficiency of copper (Cu2+). The results of studies using the raw DP trunk fiber suggested the equilibrium time was approximately 2 h, with a significantly high removal of Cu2+ during the initial 1 h at acidic pH values of 5-6, which indicated the interference of H+ ions with metal ions at low pH values. The raw DP trunk fiber was tested with initial particle sizes of 75-251 μm and adsorbent dosages in the range of 0.4-5.0 g L-1. The best adsorption efficiency was obtained at the smallest particle size and the maximum dosage. The use of different initial Cu2+ concentrations resulted in a 10% decrease in removal, but the adsorption capacity was increased three-fold with an initial concentration of 20-100 mg L-1. A significantly higher removal efficiency of Cu2+ was achieved using the modified DP waste than with the raw trunk fiber for all experimental parameters and operational conditions owing to the increased functional groups on the modified adsorbents. The reviewed literature confirmed the efficiency of DP waste for the adsorption of heavy metals, but the use of the raw or even modified DP waste for the large-scale treatment of wastewater is still a concern owing to the cost effectiveness, availability and requirement for DP waste on a massive scale. Further research for physical modifications of the raw DP waste that employs cost-effective techniques, such as using the DP waste in the form of dehydrated carbon and media filters are required.

 

Keywords: Adsorption; date palm waste; heavy metal; large-scale; wastewater treatment

 

ABSTRAK

Kelemahan yang dikaitkan dengan karbon, terutamanya kos, telah mengakibatkan pencarian berterusan untuk bahan cerap murah sedia ada dengan banyak sebagai bahan buangan. Kajian ini membentangkan keputusan daripada penggunaan sisa buangan kurma (DP) dalam bentuk yang berbeza sebagai bahan cerap berkos rendah, menonjolkan kesan hubungan masa, pH, dos dan saiz zarah bahan cerap, kepekatan logam pemula dan kesan pra rawatan ke atas kecekapan penjerapan tembaga (Cu2+). Keputusan kajian menggunakan serabut batang DP mentah mencadangkan masa keseimbangan adalah kira-kira 2 jam dengan penyingkiran tinggi Cu2+ semasa 1 jam pemula pada nilai asid pH 5-6, yang menunjukkan gangguan ion H+ dengan logam ion pada nilai pH rendah. Serabut batang DP mentah diuji dengan saiz zarah pemula daripada 75-251 μm dan dos bahan cerap dalam lingkungan 0.4-5.0 g L-1. Kecekapan penjerapan terbaik telah diperoleh pada saiz zarah terkecil dan dos maksimum. Penggunaan pemula Cu2+ berbeza kepekatan mengakibatkan pengurangan 10% penyingkiran, tetapi keupayaan penjerapan meningkat tiga kali ganda dengan kepekatan pemula 20-100 mg L-1. Kecekapan penyingkiran yang jauh lebih tinggi daripada Cu2+ telah dicapai menggunakan sisa DP terubahsuai berbanding dengan serabut batang mentah untuk semua parameter kajian dan operasi keadaan disebabkan peningkatan kumpulan fungsian pada bahan cerap terubahsuai. Kajian kepustakaan mengesahkan kecekapan sisa kumbahan DP bagi penjerapan logam berat, tetapi penggunaan sisa rawatan mentah atau DP terubahsuai untuk rawatan pada skala besar masih menjadi kebimbangan kepada keberkesanan kos, ketersediaan dan keperluan bagi sisa kumbahan DP pada skala besar-besaran. Kajian lanjutan bagi pengubahsuaian fizikal sisa kumbahan DP yang menggunakan teknik keberkesanan kos seperti menggunakan sisa kumbahan DP dalam bentuk penapis dehidrasi karbon dan media adalah diperlukan.

 

Kata kunci: Logam berat; penjerapan; rawatan sisa air; sisa kurma; skala besar

REFERENCES

Abia, A.A., Horsfall, M.J. & Didi, O. 2004. Studies on the use of agricultural by-product for the removal of trace metals from aqueous solutions. Journal of Applied Sciences and Environmental Management 6(2): 89-95.

Ahmad, F., Daud, W.M.A.W., Ahmad, M.A. & Radzi, R. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation in removing of cationic dye from aqueous solution: Kinetics and equilibrium studies. Chemical Engineering Research and Design 90(10): 1480-1490.

Ahmady-Asbchin, S., Andres, Y., Gerente, C. & Le Cloirec, P. 2009. Natural seaweed waste as sorbent for heavy metal removal from solution. Environmental Technology 30(7): 755-762.

Ahmaruzzaman, M. 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science 166(1-2): 36-59.

Ajmal, M., Rao, R.A.K., Ahmad, R. & Ahmad, J. 2000. Adsorption studies on Citrus reticulata(fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials 79(1-2): 117-131.

Akunwa, N.K., Muhammad, M.N. & Akunna, J.C. 2014. Treatment of metal-contaminated wastewater: A comparison of low-cost biosorbents. Journal of Environmental Management 146: 517-523.

Al-Ghamdi, A., Altaher, H. & Omar, W. 2013. Application of date palm trunk fibers as adsorbents for removal of Cd +2 ions from aqueous solutions. Journal of Water Reuse and Desalination 3(1): 47-54.

Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G. & Ahmad, M.N.M. 2010. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal of Hazardous Materials 176(1-3): 510-520.

Al-Haidary, A.M.A., Zanganah, F.H.H., Al-Azawi, S.R.F., Khalili, F.I. & Al-Dujaili, A.H. 2011. A study on using date palm fibers and leaf base of palm as adsorbents for Pb(II) ions from its aqueous solution. Water, Air, & Soil Pollution 214(1-4): 73-82.

Al-Homaidan, A.A., Al-Houri, H.J., Al-Hazzani, A.A., Elgaaly, G. & Moubayed, N.M.S. 2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry 7(1): 57-62.

Ali, I. 2010a. The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews 39(3-4): 95-171.

Ali, I., Al-Othman, Z.A., Alwarthan, A., Asim, M. & Khan, T.A. 2013. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environmental Science and Pollution Research 21(5): 3218-3229.

Al-Kaabi, K., Al-Khanbashi, A. & Hammami, A. 2005. Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polymer Composites 26(5): 604-613.

AlRub, F.A.A. 2006. Biosorption of zinc on palm tree leaves: Equilibrium, kinetics, and thermodynamics studies. Separation Science and Technology 41(15): 3499-3515.

Al-Saidi, H.M. 2013. The fast recovery of gold(III) ions from aqueous solutions using raw date pits: Kinetic, thermodynamic and equilibrium studies. Journal of Saudi Chemical Society 20(6): 615-624.

Alshabanat, M., Alsenani, G. & Almufarij, R. 2013. Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. Journal of Chemistry 2013: e210239.

Amin, M.T., Alazba, A.A. & Shafiq, M. 2016. Adsorption of copper (Cu2+) from aqueous solution using date palm trunk fibre: Isotherms and kinetics. Desalination and Water Treatment 57(47): 22454-22466.

Amin, M.T., Alazba, A.A. & Shafiq, M. 2015. Adsorptive removal of reactive black 5 from wastewater using Bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability 7(11): 15302-15318.

Amuda, O., Amoo, I. & Ajayi, O. 2006. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry. Journal of Hazardous Materials 129(1- 3): 69-72.

Areco, M.M. & Dos Santos Afonso, M. 2010. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus: Thermodynamics and kinetics studies. Colloids and Surfaces B: Biointerfaces81(2): 620-628.

Aydın, H., Bulut, Y. & Yerlikaya, Ç. 2008. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management 87(1): 37-45.

Balasubramanian, N., Kojima, T., Basha, C.A. & Srinivasakannan, C. 2009. Removal of arsenic from aqueous solution using electrocoagulation. Journal of Hazardous Materials 167(1- 3): 966-969.

Banerjee, S.S., Jayaram, R.V. & Joshi, M.V. 2003. Removal of nickel(II) and zinc(II) from wastewater using fly ash and impregnated fly ash. Separation Science and Technology 38(5): 1015-1032.

Baral, S.S., Das, S.N., Rath, P. & Chaudhury, G.R. 2007. Chromium(VI) removal by calcined bauxite. Biochemical Engineering Journal 34(1): 69-75.

Barreveld, W.H. 1993. Date palm products, FAO Agricultural Services Bulletin No. 101, Food and Agriculture Organization of the United Nations, Italy, Rome (http://www.fao.org/ docrep/t0681e/t0681e00.htm).

Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F. & Trouvé, G. 2011. Biosorption of copper from aqueous solutions by date stones and palm-trees waste. Environmental Chemistry Letters 9(1): 65-69.

Bhattacharya, A.K., Mandal, S.N. & Das, S.K. 2006. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal 123(1-2): 43-51.

Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., Haroon, H. & Mahmood, Q. 2013. Waste biomass adsorbents for copper removal from industrial wastewater - A review. Journal of Hazardous Materials 263: 322-333.

Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K. & Matis, K.A. 2003. Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Research 37(16): 4018-4026.

Boudrahem, F., Aissani-Benissad, F. & Soualah, A. 2011. Adsorption of Lead(II) from aqueous solution by using leaves of date trees as an adsorbent. Journal of Chemical & Engineering Data 56(5): 1804-1812.

Bouhamed, F., Elouear, Z. & Bouzid, J. 2012. Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers 43(5): 741-749.

Brusick, D. 1993. Genotoxicity of phenolic antioxidants. Toxicology and Industrial Health 9(1-2): 223-230.

Bsoul, A.A., Zeatoun, L., Abdelhay, A. & Chiha, M. 2014. Adsorption of copper ions from water by different types of natural seed materials. Desalination and Water Treatment 52(31-33): 5876-5882.

Bulut, Y. & Tez, Z. 2007. Adsorption studies on ground shells of hazelnut and almond. Journal of Hazardous Materials 149(1): 35-41.

Chaouch, N., Ouahrani, M. & Laouini, S. 2014. Adsorption of Lead (II) from aqueous solutions onto activated carbon prepared from Algerian dates stones of Phoenix dactylifera. L (Ghars variety) by H3PO4 activation. Oriental Journal of Chemistry 30(3): 1317-1322.

Chaouch, N., Ouahrani, M.R., Chaouch, S. & Gherraf, N. 2013. Adsorption of cadmium (II) from aqueous solutions by activated carbon produced from Algerian dates stones of Phoenix dactylifera by H3PO4 activation. Desalination and Water Treatment 51(10-12): 2087-2092.

Chatterjee, A., Widick, P., Sternschein, R., Smith, W.B. & Bromberger, B. 2010. The assessment of art attributes. Empirical Studies of the Arts 28(2): 207-222.

Chieng, H.I., Lim, L.B.L. & Priyantha, N. 2015. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: Equilibrium, thermodynamics, kinetics and regeneration studies. Environmental Technology 36(1): 86-97.

Da̧browski, A., Hubicki, Z., Podkościelny, P. & Robens, E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2): 91-106.

Demirbas, A. 2008. Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials 157(2): 220-229.

Dich, J., Zahm, S.H., Hanberg, A. & Adami, H.O. 1997. Pesticides and cancer. Cancer Causes & Control 8(3): 420-443.

Ebrahimi, R., Maleki, A., Shahmoradi, B., Daraei, H., Mahvi, A.H., Barati, A.H. & Eslami, A. 2013. Elimination of arsenic contamination from water using chemically modified wheat straw. Desalination and Water Treatment 51(10-12): 2306- 2316.

El Nemr, A., Khaled, A., Abdelwahab, O. & El-Sikaily, A. 2008. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Journal of Hazardous Materials 152(1): 263-275.

El-Bindary, A.A., Hussien, M.A., Diab, M.A. & Eessa, A.M. 2014. Adsorption of acid yellow 99 by polyacrylonitrile/ activated carbon composite: Kinetics, thermodynamics and isotherm studies. Journal of Molecular Liquids 197: 236-242.

El-Juhany, L.I. 2010. Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Australian Journal of Basic and Applied Sciences 4(8): 3998-4010.

Ghorbani, F., Sanati, A.M., Younesi, H. & Ghoreyshi, A.A. 2012. The potential of date palm leaf ash as low cost adsorbent for the removal of PB(II) ion from aqueous solution. International Journal of Engineering - Transactions B: Applications 25(4): 278-296.

Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A. & Agarwal, S. 2012. Chemical treatment technologies for waste-water recycling - An overview. RSC Advances 2(16): 6380-6388.

Gupta, V.K., Ali, I., Saleh, T.A., Siddiqui, M.N. & Agarwal, S. 2013. Chromium removal from water by activated carbon developed from waste rubber tires. Environmental Science and Pollution Research 20(3): 1261-1268.

Haleem, A.M. & Abdulgafoor, E.A. 2010. The biosorption of Cr (VI) from aqueous solution using date palm fibers (Leef). Al-Khwarizmi Engineering Journal 6(4): 31-36.

Hall, D.W., Sandrin, J.A. & McBride, R.E. 1990. An overview of solvent extraction treatment technologies. Environmental Progress 9(2): 98-105.

Hamouche, A., Zine, B.M. & Krim, L. 2015. Kinetics and thermodynamics of Cr ions sorption on mixed sorbents prepared from olive stone and date pit from aqueous solution. International Journal of Food and Biosystem Engineering 1(1): 1-8.

He, J. & Chen, J.P. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology 160: 67-78.

Hikmat, N.A., Qassim, B.B. & Khethi, M.T. 2014. Thermodynamic and kinetic studies of lead adsorption from aquesous solution onto petiole and fiber of palm tree. American Journal of Chemistry 4(4): 116-124.

Hilal, N.M., Ahmed, I.A. & El-Sayed, R.E. 2012. Activated and non-activated date pits adsorbents for the removal of copper(II) and cadmium(II) from aqueous solutions. ISRN Physical Chemistry 2012: 1-11.

Ho, Y.S., Porter, J.F. & McKay, G. 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution 141(1-4): 1-33.

Hossain, M.A., Ngo, H.H., Guo, W.S., Nguyen, T.V. & Vigneswaran, S. 2014. Performance of cabbage and cauliflower wastes for heavy metals removal. Desalination and Water Treatment 52(4-6): 844-860.

Izhar, S., Chuan, L.Y. & Ismail, M.H.S. 2014. Removal of boron and arsenic from petrochemical wastewater using zeolite as adsorbent. From Sources to Solution, edited by Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M. & Ishak, M.Y. Singapore: Springer. pp. 439-443.

Jacques, R.A., Bernardi, R., Caovila, M., Lima, E.C., Pavan, F.A., Vaghetti, J.C.P. & Airoldi, C. 2007. Removal of Cu(II), Fe(III), and Cr(III) from aqueous solution by aniline grafted silica gel. Separation Science and Technology 42(3): 591-609.

Javaid, A., Bajwa, R., Shafique, U. & Anwar, J. 2011. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy 35(5): 1675-1682.

Jiménez-Cedillo, M.J., Olguín, M.T., Fall, C. & Colin-Cruz, A. 2013. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum(parsley). Journal of Environmental Management 117: 242-252.

Kamari, A., Yusoff, S.N.M., Abdullah, F. & Putra, W.P. 2014. Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering 2(4): 1912-1919.

Kanawade, S.M. & Gaikwad, R.W. 2011. Removal of zinc ions from industrial effluent by using cork powder as adsorbent. International Journal of Chemical Engineering and Applications 2(3): 199-201.

Khosa, M.A., Wu, J. & Ullah, A. 2013. Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Advances 3(43): 20800.

Kim, K.H., Keller, A.A. & Yang, J.K. 2013. Removal of heavy metals from aqueous solution using a novel composite of recycled materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 425: 6-14.

Krishnan, K.A. & Anirudhan, T.S. 2003. Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA 29(2): 147-156.

Lattuada, R.M., Peralba, M.C.R., Dos Santos, J.H.Z. & Fisch, A.G. 2014. Peat, rice husk and rice husk carbon as low-cost adsorbents for metals from acidic aqueous solutions. Separation Science and Technology 49(1): 101-111.

Lee, C.K., Low, K.S. & Chow, S.W. 1996. Chrome sludge as an adsorbent for colour removal. Environmental Technology 17(9): 1023-1028.

Li, M., Cheng, X. & Guo, H. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation 76: 81-85.

Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. & Guo, S. 2008. Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Industrial Crops and Products 28(3): 294-302.

Liang, S., Guo, X., Feng, N. & Tian, Q. 2009. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. Journal of Hazardous Materials 170(1): 425-429.

Lim, A.P., Aris, A.Z. & Juahir, H. 2014. An experimental approach on the removal of Cd (II) and Pb (II) ions from aqueous solutions by using dead calcareous skeletons. In From Sources to Solution, edited by Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M. & Ishak, M.Y. Singapore: Springer. pp. 117-120.

Mallaki, M. & Fatehi, R. 2014. Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water. Renewable Energy 63(C): 286-291.

Mandal, N.K. 2014. Performance of low-cost bio adsorbents for the removal of metal ions - A review. International Journal of Science and Research 3(1): 177-180.

Marin, A.B.P., Ortuno, J.F., Aguilar, M.I., Meseguer, V.F., Saez, J. & Llorens, M. 2010. Use of chemical modification to determine the binding of Cd(II), Zn(II) and Cr(III) ions by orange waste. Biochemical Engineering Journal 53(1): 2-6.

Mavrov, V., Stamenov, S., Todorova, E., Chmiel, H. & Erwe, T. 2006. New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater. Desalination 201(1-3): 290-296.

Mohan, D. & Pittman, C.U. 2007. Arsenic removal from water/ wastewater using adsorbents - A critical review. Journal of Hazardous Materials 142(1-2): 1-53.

Mohan, S. & Gandhimathi, R. 2009. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials 169(1-3): 351-359.

Momcilovic, M., Purenovic, M., Bojic, A., Zarubica, A. & Ranđelovic, M. 2011. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1-3): 53-59.

Moore, J.W. & Ramamoorthy, S. 1984. Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment. New York: Springer. pp.77-99. http://link. springer.com/10.1007/978-1-4612-5210-8_5.

Muhammad, M.N. & Nwaedozie, J.M. 2012. Application of marine biomass for the removal of metals from industrial wastewater. Indian Journal of Innovations and Development 1(1): 36-44.

Namasivayam, C. & Senthilkumar, S. 1999. Adsorption of copper(II) by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution and radiator manufacturing industry wastewater. Separation Science and Technology 34(2): 201-217.

Narain, S., Ojha, C.S.P., Mishra, S.K., Chaube, U.C. & Sharma, P.K. 2011. Cadmium and chromium removal by aquatic plant. International Journal of Environmental Sciences 1(6): 1297-1304.

Olaofe, O., Olagboye, S.A., Akanji, P.S., Adamolugbe, E.Y., Fowowe, O.T. & Olaniyi, A.A. 2015. Kinetic studies of adsorption of heavy metals on clays. International Journal of Chemistry 7(1): 48-54.

Oller, I., Malato, S. & Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Science of the Total Environment 409(20): 4141-4166.

Opeolu, B.O., Bamgbose, O., Arowolo, T.A. & Adetunji, M.T. 2010. Utilization of biomaterials as adsorbents for heavy metals’ removal from aqueous matrices. Scientific Research and Essays 5(14): 1780-1787.

Paez-Hernandez, M.E., Aguilar-Arteaga, K., Galan-Vidal, C.A., Palomar-Pardave, M., Romero-Romo, M. & Ramirez-Silva, M.T. 2005. Mercury ions removal from aqueous solution using an activated composite membrane. Environmental Science & Technology 39(19): 7667-7670.

Park, D., Yun, Y.S. & Park, J.M. 2010. The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering 15(1): 86-102.

Pehlivan, E., Tran, H.T., Ouédraogo, W.K.I., Schmidt, C., Zachmann, D. & Bahadir, M. 2013. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chemistry 138(1): 133-138.

Purkayastha, D., Mishra, U. & Biswas, S. 2014. A comprehensive review on Cd(II) removal from aqueous solution. Journal of Water Process Engineering 2: 105-128.

Putra, W.P., Kamari, A., Yusoff, S.N.M., Ishak, C.F., Mohamed, A., Hashim, N. & Isa, I.M. 2014. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences 04(01): 25-35.

Qadeer, R. & Akhtar, S. 2005. Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29: 95-99.

Qian, F., Sun, X., Liu, Y. & Xu, H. 2013. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation. Environmental Technology 34(12): 1513-1520.

Rajamohan, N., Rajasimman, M. & Dilipkumar, M. 2014. Parametric and kinetic studies on biosorption of mercury using modified Phoenix dactyliferabiomass. Journal of the Taiwan Institute of Chemical Engineers 45(5): 2622-2627.

Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda, R.R. & Nair, B.U. 2010. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiaebiomass: A kinetic and thermodynamic study. Bioresource Technology 101(5): 1466-1470.

Ratna Kumar, P., Chaudhari, S., Khilar, K.C. & Mahajan, S.P. 2004. Removal of arsenic from water by electrocoagulation. Chemosphere 55(9): 1245-1252.

Renge, V.C., Khedkar, S.V. & Pande, S.V. 2012. Removal of heavy metals from waste water using low cost adsorbents: A review. Scientific Reviews & Chemical Communications 2(4): 580-584.

Riahi, K., Mammou, A.B. & Thayer, B.B. 2009. Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials 161(2-3): 608-613.

Riaz, M., Nadeem, R., Hanif, M.A., Ansari, T.M. & Rehman, K. 2009. Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum(Cotton) waste biomass. Journal of Hazardous Materials 161(1): 88-94.

Sahu, M.K., Mandal, S., Dash, S.S., Badhai, P. & Patel, R.K. 2013. Removal of Pb(II) from aqueous solution by acid activated red mud. Journal of Environmental Chemical Engineering 1(4): 1315-1324.

Saka, C., Şahin, Ö. & Küçük, M.M. 2012. Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. International Journal of Environmental Science and Technology 9(2): 379-394.

Sankararamakrishnan, N., Jaiswal, M. & Verma, N. 2014. Composite nanofloral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chemical Engineering Journal 235: 1-9.

Sciban, M., Radetic, B., Kevresan, Z. & Klasnja, M. 2007. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology 98(2): 402-409.

Sha, L., Xueyi, G., Ningchuan, F. & Qinghua, T. 2009. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids and Surfaces B: Biointerfaces 73(1): 10-14.

Shahzad, A., Miran, W., Rasool, K., Nawaz, M., Jang, J., Lim, S.R. & Lee, D.S. 2017. Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances 7(16): 9764-9771.

Shakoor, M.B., Niazi, N.K., Bibi, I., Murtaza, G., Kunhikrishnan, A., Seshadri, B., Shahid, M., Ali, S., Bolan, N.S., Ok, Y.S., Abid, M. & Ali, F. 2016. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology 46(5): 467-499.

Shyam, R., Puri, J.K., Kaur, H., Amutha, R. & Kapila, A. 2013. Single and binary adsorption of heavy metals on fly ash samples from aqueous solution. Journal of Molecular Liquids 178: 31-36.

Singh, U. & Kaushal, R.K. 2013. Treatment of waste water with low cost adsorbent - A review. VSRD International Journal of Technical & Non-Technical Research 4(13): 33-42.

Sočo, E. & Kalembkiewicz, J. 2013. Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal of Environmental Chemical Engineering 1(3): 581-588.

Soliman, A.M., Elwy, H.M., Thiemann, T., Majedi, Y., Labata, F.T. & Al-Rawashdeh, N.A.F. 2016. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves. Journal of the Taiwan Institute of Chemical Engineers 58: 264-273.

Srivastav, R.K., Gupta, S.K., Nigam, K.D.P. & Vasudevan, P. 1993. Use of aquatic plants for the removal of heavy metals from wastewater. International Journal of Environmental Studies 45(1): 43-50.

Srivastava, S.K., Singh, A.K. & Sharma, A. 1994. Studies on the uptake of lead and zinc by lignin obtained from black liquor - a paper industry waste material. Environmental Technology 15(4): 353-361.

Tan, G. & Xiao, D. 2009. Adsorption of cadmium ion from aqueous solution by ground wheat stems. Journal of Hazardous Materials 164(2-3): 1359-1363.

Tan, W.T. 1985. Copper (II) adsorption by waste tea leaves and coffee powder. Pertanika 8(2): 223-230.

UN WWAP 2003. United Nations World Water Assessment Programme. The World Water Development Report 1: Water for People, Water for Life. UNESCO: Paris, France.

Uzunoğlu, D., Gürel, N., Özkaya, N. & Özer, A. 2014. The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalination and Water Treatment 52(7-9): 1514-1523.

Varga, M., Takacs, M., Zaray, G. & Varga, I. 2013. Comparative study of sorption kinetics and equilibrium of chromium (VI) on charcoals prepared from different low-cost materials. Microchemical Journal 107: 25-30.

Wang, S. & Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156(1): 11-24.

WHO 2011. Guidelines for drinking-water quality, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (http://www.who.int/water_sanitation_health/ publications/2011/dwq_guidelines/en/).

Yacob, A.R., Mustapha, N.M., Ali, A. & Al Swaidan, H.M. 2013. One-step air pyrolysis of date palm tree waste: Physical and morphological study. Journal of Biobased Materials and Bioenergy 7(2): 223-228.

Yadav, S.K., Singh, D.K. & Sinha, S. 2013. Adsorption study of lead(II) onto xanthated date palm trunk: Kinetics, isotherm and mechanism. Desalination and Water Treatment 51(34- 36): 6798-6807.

Yadav, S.K., Sinha, S. & Singh, D.K. 2015. Chromium(VI) removal from aqueous solution and industrial wastewater by modified date palm trunk. Environmental Progress & Sustainable Energy 34(2): 452-460.

Zahra, N. 2012. Lead removal from water by low cost adsorbents: a review. Pak. J. Anal. Environ. Chem. 13(1): 01-08.

Zhang, H., Xiang, L., Zhang, D. & Qing, H. 2012. Treatment of landfill leachate by internal microelectrolysis and sequent Fenton process. Desalination and Water Treatment 47(1-3): 243-248.

Zhu, B., Fan, T. & Zhang, D. 2008. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials 153(1-2): 300-308.

Zwain, H.M., Vakili, M. & Dahlan, I. 2014. Waste material adsorbents for zinc removal from wastewater: A comprehensive review. International Journal of Chemical Engineering 2014: 1-13.

 

 

*Pengarang untuk surat-menyurat; email: mtamin@ksu.edu.sa

 

 

 

 

previous