Sains Malaysiana 47(1)(2018): 35–49
http://dx.doi.org/10.17576/jsm-2018-4701-05
Removal
of Heavy Metals from Wastewater using Date Palm as a Biosorbent:
A Comparative Review
(Penyingkiran Logam Berat dari Air Kumbahan menggunakan Kurma sebagai Satu
Bahan Bioserap: Satu Kajian Perbandingan)
M. SHAFIQ1, A.A. ALAZBA1,2 & M.T. AMIN1,3*
1Alamoudi Water Research Chair, King
Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
2Agricultural Engineering
Department, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi
Arabia
3Department of Environmental
Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
Received: 12 March 2017/Accepted:
26 June 2017
ABSTRACT
The drawbacks associated
with activated carbon, mainly cost, have resulted in
the continuing search for inexpensive adsorbents easily and abundantly
available as waste materials. The current review presents the results of using
different forms of date palm (DP) waste as low-cost biosorbents, highlighting effects of contact time, pH, the
dose and size of the adsorbent particles, initial metal concentrations and the
effects of pre-treatment on the adsorption efficiency of copper (Cu2+).
The results of studies using the raw DP trunk fiber suggested the
equilibrium time was approximately 2 h, with a significantly high removal of Cu2+ during
the initial 1 h at acidic pH values of 5-6, which
indicated the interference of H+ ions
with metal ions at low pH values. The raw DP trunk
fiber was tested with initial particle sizes of 75-251 μm and adsorbent dosages in the range of 0.4-5.0 g L-1.
The best adsorption efficiency was obtained at the smallest particle size and
the maximum dosage. The use of different initial Cu2+ concentrations
resulted in a 10% decrease in removal, but the adsorption capacity was
increased three-fold with an initial concentration of 20-100 mg L-1.
A significantly higher removal efficiency of Cu2+ was
achieved using the modified DP waste than with the raw
trunk fiber for all experimental parameters and operational conditions owing to
the increased functional groups on the modified adsorbents. The reviewed
literature confirmed the efficiency of DP waste for the adsorption of
heavy metals, but the use of the raw or even modified DP waste
for the large-scale treatment of wastewater is still a concern owing to the
cost effectiveness, availability and requirement for DP waste
on a massive scale. Further research for physical modifications of the raw DP waste
that employs cost-effective techniques, such as using the DP waste
in the form of dehydrated carbon and media filters are required.
Keywords: Adsorption; date
palm waste; heavy metal; large-scale; wastewater treatment
ABSTRAK
Kelemahan yang
dikaitkan dengan
karbon, terutamanya kos, telah
mengakibatkan pencarian
berterusan untuk bahan cerap murah
sedia ada
dengan banyak sebagai
bahan buangan.
Kajian ini membentangkan
keputusan daripada
penggunaan sisa buangan kurma (DP)
dalam bentuk
yang berbeza sebagai bahan cerap berkos
rendah, menonjolkan
kesan hubungan masa, pH, dos
dan saiz zarah
bahan cerap,
kepekatan logam pemula dan kesan
pra rawatan
ke atas kecekapan
penjerapan tembaga
(Cu2+).
Keputusan kajian
menggunakan serabut batang DP
mentah mencadangkan masa keseimbangan adalah kira-kira 2 jam dengan penyingkiran tinggi Cu2+
semasa 1 jam pemula pada nilai asid
pH 5-6, yang menunjukkan gangguan
ion H+ dengan logam
ion pada nilai
pH rendah. Serabut batang
DP
mentah diuji
dengan saiz zarah
pemula daripada
75-251 μm dan dos bahan cerap dalam
lingkungan 0.4-5.0 g L-1.
Kecekapan
penjerapan terbaik telah diperoleh pada saiz zarah
terkecil dan
dos maksimum. Penggunaan
pemula Cu2+ berbeza kepekatan mengakibatkan pengurangan 10%
penyingkiran, tetapi keupayaan penjerapan meningkat tiga kali ganda dengan kepekatan
pemula 20-100 mg L-1.
Kecekapan
penyingkiran yang jauh lebih tinggi daripada
Cu2+ telah
dicapai menggunakan
sisa DP terubahsuai
berbanding dengan
serabut batang mentah untuk
semua parameter kajian
dan operasi keadaan
disebabkan peningkatan
kumpulan fungsian pada bahan cerap
terubahsuai. Kajian
kepustakaan mengesahkan kecekapan sisa kumbahan DP bagi
penjerapan logam
berat, tetapi penggunaan
sisa rawatan
mentah atau DP terubahsuai untuk rawatan pada skala
besar masih
menjadi kebimbangan kepada keberkesanan kos, ketersediaan dan keperluan bagi
sisa kumbahan
DP
pada skala besar-besaran.
Kajian lanjutan
bagi pengubahsuaian fizikal sisa kumbahan
DP
yang menggunakan teknik
keberkesanan kos
seperti menggunakan
sisa kumbahan DP dalam bentuk penapis
dehidrasi karbon
dan media adalah diperlukan.
Kata kunci: Logam
berat; penjerapan;
rawatan sisa air; sisa kurma; skala
besar
REFERENCES
Abia, A.A., Horsfall, M.J. & Didi, O.
2004. Studies on the use of agricultural by-product for the removal of
trace metals from aqueous solutions. Journal of Applied Sciences and
Environmental Management 6(2): 89-95.
Ahmad, F., Daud, W.M.A.W., Ahmad, M.A.
& Radzi, R. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation
in removing of cationic dye from aqueous solution: Kinetics and equilibrium
studies. Chemical Engineering Research and Design 90(10): 1480-1490.
Ahmady-Asbchin, S., Andres, Y., Gerente, C. & Le Cloirec, P. 2009. Natural seaweed waste as sorbent for heavy metal removal from
solution. Environmental Technology 30(7): 755-762.
Ahmaruzzaman, M. 2011. Industrial wastes as low-cost potential adsorbents for the
treatment of wastewater laden with heavy metals. Advances in Colloid
and Interface Science 166(1-2): 36-59.
Ajmal,
M., Rao, R.A.K., Ahmad, R. & Ahmad, J. 2000. Adsorption studies on Citrus reticulata(fruit
peel of orange): removal and recovery of Ni(II) from
electroplating wastewater. Journal of Hazardous Materials 79(1-2):
117-131.
Akunwa,
N.K., Muhammad, M.N. & Akunna, J.C. 2014. Treatment of metal-contaminated wastewater: A comparison of low-cost biosorbents. Journal of Environmental Management 146:
517-523.
Al-Ghamdi, A., Altaher,
H. & Omar, W. 2013. Application of date
palm trunk fibers as adsorbents for removal of Cd +2 ions
from aqueous solutions. Journal of Water Reuse and Desalination 3(1):
47-54.
Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N.,
Walker, G. & Ahmad, M.N.M. 2010. Adsorption mechanisms of
removing heavy metals and dyes from aqueous solution using date pits solid
adsorbent. Journal of Hazardous Materials 176(1-3): 510-520.
Al-Haidary, A.M.A., Zanganah,
F.H.H., Al-Azawi, S.R.F., Khalili,
F.I. & Al-Dujaili, A.H. 2011. A
study on using date palm fibers and leaf base of palm as adsorbents for Pb(II)
ions from its aqueous solution. Water, Air, & Soil Pollution 214(1-4):
73-82.
Al-Homaidan, A.A., Al-Houri, H.J., Al-Hazzani, A.A., Elgaaly, G. & Moubayed,
N.M.S. 2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry 7(1): 57-62.
Ali,
I. 2010a. The quest for active carbon adsorbent substitutes: Inexpensive
adsorbents for toxic metal ions removal from wastewater. Separation &
Purification Reviews 39(3-4): 95-171.
Ali, I., Al-Othman, Z.A., Alwarthan, A., Asim, M. & Khan, T.A. 2013. Removal of arsenic species from water by batch and column
operations on bagasse fly ash. Environmental Science and Pollution
Research 21(5): 3218-3229.
Al-Kaabi, K., Al-Khanbashi,
A. & Hammami, A. 2005. Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite
properties. Polymer Composites 26(5): 604-613.
Al‐Rub, F.A.A. 2006. Biosorption of zinc on palm tree leaves: Equilibrium,
kinetics, and thermodynamics studies. Separation Science and Technology 41(15):
3499-3515.
Al-Saidi, H.M. 2013. The
fast recovery of gold(III) ions from aqueous solutions
using raw date pits: Kinetic, thermodynamic and equilibrium studies. Journal
of Saudi Chemical Society 20(6): 615-624.
Alshabanat,
M., Alsenani, G. & Almufarij,
R. 2013. Removal of crystal violet dye from aqueous
solutions onto date palm fiber by adsorption technique. Journal of
Chemistry 2013: e210239.
Amin, M.T., Alazba, A.A. & Shafiq, M. 2016. Adsorption of copper (Cu2+)
from aqueous solution using date palm trunk fibre:
Isotherms and kinetics. Desalination and Water Treatment 57(47):
22454-22466.
Amin, M.T., Alazba, A.A. & Shafiq, M. 2015. Adsorptive removal of
reactive black 5 from wastewater using Bentonite clay: Isotherms, kinetics and
thermodynamics. Sustainability 7(11): 15302-15318.
Amuda,
O., Amoo, I. & Ajayi,
O. 2006. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry. Journal of Hazardous Materials 129(1- 3): 69-72.
Areco, M.M. & Dos Santos Afonso, M.
2010. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus:
Thermodynamics and kinetics studies. Colloids and Surfaces B: Biointerfaces81(2): 620-628.
Aydın,
H., Bulut, Y. & Yerlikaya,
Ç. 2008. Removal of copper (II) from aqueous solution by
adsorption onto low-cost adsorbents. Journal of Environmental
Management 87(1): 37-45.
Balasubramanian, N., Kojima, T., Basha, C.A. & Srinivasakannan,
C. 2009. Removal of arsenic from aqueous solution using
electrocoagulation. Journal of Hazardous Materials 167(1- 3):
966-969.
Banerjee,
S.S., Jayaram, R.V. & Joshi, M.V. 2003. Removal of nickel(II) and zinc(II) from wastewater using fly ash and
impregnated fly ash. Separation Science and Technology 38(5): 1015-1032.
Baral, S.S., Das, S.N., Rath, P. & Chaudhury, G.R.
2007. Chromium(VI) removal by calcined
bauxite. Biochemical Engineering Journal 34(1): 69-75.
Barreveld, W.H. 1993. Date palm products, FAO Agricultural Services Bulletin No. 101,
Food and Agriculture Organization of the United Nations, Italy, Rome
(http://www.fao.org/ docrep/t0681e/t0681e00.htm).
Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F. & Trouvé, G. 2011. Biosorption of copper from aqueous
solutions by date stones and palm-trees waste. Environmental
Chemistry Letters 9(1): 65-69.
Bhattacharya,
A.K., Mandal, S.N. & Das, S.K. 2006. Adsorption of Zn(II)
from aqueous solution by using different adsorbents. Chemical Engineering Journal 123(1-2): 43-51.
Bilal,
M., Shah, J.A., Ashfaq, T., Gardazi,
S.M.H., Tahir, A.A., Pervez, A., Haroon, H. & Mahmood, Q. 2013. Waste biomass
adsorbents for copper removal from industrial wastewater - A review. Journal
of Hazardous Materials 263: 322-333.
Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K. & Matis, K.A. 2003. Hybrid
flotation-membrane filtration process for the removal of heavy metal ions from
wastewater. Water Research 37(16): 4018-4026.
Boudrahem, F., Aissani-Benissad, F. & Soualah,
A. 2011. Adsorption of Lead(II) from aqueous
solution by using leaves of date trees as an adsorbent. Journal of Chemical
& Engineering Data 56(5): 1804-1812.
Bouhamed, F., Elouear, Z. & Bouzid, J.
2012. Adsorptive removal of copper(II) from
aqueous solutions on activated carbon prepared from Tunisian date stones:
Equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of
Chemical Engineers 43(5): 741-749.
Brusick, D. 1993. Genotoxicity of phenolic antioxidants. Toxicology and
Industrial Health 9(1-2): 223-230.
Bsoul, A.A., Zeatoun, L., Abdelhay, A. & Chiha, M. 2014. Adsorption of copper ions from water by
different types of natural seed materials. Desalination and Water
Treatment 52(31-33): 5876-5882.
Bulut, Y. & Tez, Z. 2007. Adsorption studies on ground shells of hazelnut and almond. Journal
of Hazardous Materials 149(1): 35-41.
Chaouch, N., Ouahrani, M. & Laouini, S.
2014. Adsorption of Lead (II) from aqueous solutions onto activated
carbon prepared from Algerian dates stones of Phoenix dactylifera. L (Ghars variety) by H3PO4
activation. Oriental Journal of Chemistry 30(3): 1317-1322.
Chaouch, N., Ouahrani, M.R., Chaouch, S.
& Gherraf, N. 2013. Adsorption of cadmium
(II) from aqueous solutions by activated carbon produced from Algerian
dates stones of Phoenix dactylifera
by H3PO4 activation. Desalination and Water Treatment 51(10-12):
2087-2092.
Chatterjee,
A., Widick, P., Sternschein,
R., Smith, W.B. & Bromberger, B.
2010. The assessment of art
attributes. Empirical Studies of the Arts 28(2): 207-222.
Chieng, H.I., Lim, L.B.L.
& Priyantha, N. 2015. Enhancing
adsorption capacity of toxic malachite green dye through chemically
modified breadnut peel: Equilibrium, thermodynamics, kinetics and
regeneration studies. Environmental Technology 36(1):
86-97.
Da̧browski, A., Hubicki, Z., Podkościelny,
P. & Robens, E. 2004. Selective
removal of the heavy metal ions from waters and industrial wastewaters
by ion-exchange method. Chemosphere 56(2): 91-106.
Demirbas, A. 2008. Heavy metal adsorption
onto agro-based waste materials: A review. Journal of Hazardous
Materials 157(2): 220-229.
Dich,
J., Zahm, S.H., Hanberg,
A. & Adami, H.O. 1997. Pesticides
and cancer. Cancer Causes & Control 8(3): 420-443.
Ebrahimi, R., Maleki, A., Shahmoradi, B.,
Daraei, H., Mahvi, A.H., Barati, A.H. & Eslami, A.
2013. Elimination of arsenic contamination from water
using chemically modified wheat straw. Desalination and
Water Treatment 51(10-12): 2306- 2316.
El
Nemr, A., Khaled, A., Abdelwahab,
O. & El-Sikaily, A. 2008. Treatment of wastewater
containing toxic chromium using new activated carbon developed from
date palm seed. Journal of Hazardous Materials 152(1):
263-275.
El-Bindary, A.A., Hussien, M.A.,
Diab, M.A. & Eessa, A.M.
2014. Adsorption of acid yellow 99 by polyacrylonitrile/
activated carbon composite: Kinetics, thermodynamics and isotherm
studies. Journal of Molecular Liquids 197: 236-242.
El-Juhany, L.I. 2010. Degradation of date palm trees and date
production in Arab countries: Causes and potential rehabilitation.
Australian Journal of Basic and Applied Sciences 4(8):
3998-4010.
Ghorbani, F., Sanati, A.M., Younesi, H. &
Ghoreyshi, A.A. 2012. The potential of date palm leaf ash as
low cost adsorbent for the removal of PB(II)
ion from aqueous solution. International Journal of Engineering
- Transactions B: Applications 25(4): 278-296.
Gupta, V.K., Ali, I.,
Saleh, T.A., Nayak, A. & Agarwal,
S. 2012. Chemical treatment technologies for waste-water recycling - An overview.
RSC Advances 2(16): 6380-6388.
Gupta, V.K., Ali, I.,
Saleh, T.A., Siddiqui, M.N. & Agarwal, S. 2013. Chromium removal
from water by activated carbon developed from waste rubber tires.
Environmental Science and Pollution Research 20(3): 1261-1268.
Haleem,
A.M. & Abdulgafoor, E.A. 2010. The
biosorption of Cr (VI) from aqueous
solution using date palm fibers (Leef).
Al-Khwarizmi Engineering Journal 6(4): 31-36.
Hall,
D.W., Sandrin, J.A. & McBride, R.E.
1990. An
overview of solvent extraction treatment technologies. Environmental
Progress 9(2): 98-105.
Hamouche, A., Zine, B.M. &
Krim, L. 2015. Kinetics and thermodynamics
of Cr ions sorption on mixed sorbents prepared from olive stone
and date pit from aqueous solution. International Journal of
Food and Biosystem Engineering 1(1): 1-8.
He, J. & Chen, J.P. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials,
performances, chemistry, and modeling simulation tools. Bioresource
Technology 160: 67-78.
Hikmat, N.A., Qassim, B.B. & Khethi, M.T. 2014. Thermodynamic and kinetic studies of lead adsorption from aquesous solution onto petiole and fiber of palm tree. American Journal of Chemistry 4(4): 116-124.
Hilal,
N.M., Ahmed, I.A. & El-Sayed, R.E. 2012. Activated and
non-activated date pits adsorbents for the removal of copper(II)
and cadmium(II) from aqueous solutions. ISRN Physical Chemistry 2012:
1-11.
Ho, Y.S.,
Porter, J.F. & McKay, G. 2002. Equilibrium isotherm studies for the
sorption of divalent metal ions onto peat: Copper, nickel and lead single
component systems. Water, Air, and Soil Pollution 141(1-4): 1-33.
Hossain, M.A.,
Ngo, H.H., Guo, W.S., Nguyen, T.V. & Vigneswaran, S. 2014. Performance of cabbage and
cauliflower wastes for heavy metals removal. Desalination and Water Treatment 52(4-6): 844-860.
Izhar,
S., Chuan, L.Y. & Ismail, M.H.S. 2014. Removal of boron and arsenic from petrochemical wastewater using
zeolite as adsorbent. From Sources to Solution,
edited by Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M. & Ishak,
M.Y. Singapore: Springer. pp. 439-443.
Jacques,
R.A., Bernardi, R., Caovila,
M., Lima, E.C., Pavan, F.A., Vaghetti,
J.C.P. & Airoldi, C. 2007. Removal of Cu(II), Fe(III), and Cr(III) from aqueous solution by
aniline grafted silica gel. Separation Science and Technology 42(3):
591-609.
Javaid,
A., Bajwa, R., Shafique, U.
& Anwar, J. 2011. Removal of heavy metals by
adsorption on Pleurotus ostreatus. Biomass and Bioenergy 35(5): 1675-1682.
Jiménez-Cedillo, M.J., Olguín, M.T., Fall, C. & Colin-Cruz, A. 2013. As(III)
and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum(parsley). Journal of Environmental
Management 117: 242-252.
Kamari,
A., Yusoff, S.N.M., Abdullah, F. & Putra, W.P. 2014. Biosorptive removal of Cu(II),
Ni(II) and Pb(II) ions from aqueous solutions using
coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering 2(4): 1912-1919.
Kanawade, S.M. & Gaikwad, R.W. 2011. Removal of
zinc ions from industrial effluent by using cork powder as adsorbent. International
Journal of Chemical Engineering and Applications 2(3): 199-201.
Khosa,
M.A., Wu, J. & Ullah, A. 2013. Chemical modification, characterization, and application of chicken
feathers as novel biosorbents. RSC Advances 3(43): 20800.
Kim,
K.H., Keller, A.A. & Yang, J.K. 2013. Removal of
heavy metals from aqueous solution using a novel composite of recycled
materials. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 425: 6-14.
Krishnan,
K.A. & Anirudhan, T.S. 2003. Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith:
Kinetics and equilibrium studies. Water SA 29(2): 147-156.
Lattuada,
R.M., Peralba, M.C.R., Dos Santos, J.H.Z. & Fisch, A.G. 2014. Peat, rice husk and rice husk carbon as
low-cost adsorbents for metals from acidic aqueous solutions. Separation
Science and Technology 49(1): 101-111.
Lee,
C.K., Low, K.S. & Chow, S.W. 1996. Chrome sludge as an adsorbent
for colour removal. Environmental Technology 17(9):
1023-1028.
Li,
M., Cheng, X. & Guo, H. 2013. Heavy metal
removal by biomineralization of urease producing
bacteria isolated from soil. International Biodeterioration & Biodegradation 76: 81-85.
Li, W., Zhang,
L., Peng, J., Li, N., Zhang, S. & Guo, S. 2008.
Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater:
Equilibrium and kinetic studies. Industrial Crops and Products 28(3):
294-302.
Liang,
S., Guo, X., Feng, N. & Tian, Q. 2009. Application of orange peel xanthate for the adsorption of Pb2+ from
aqueous solutions. Journal of Hazardous Materials 170(1):
425-429.
Lim,
A.P., Aris, A.Z. & Juahir,
H. 2014. An experimental approach on the removal of Cd (II) and Pb (II) ions from aqueous solutions by using dead
calcareous skeletons. In From Sources to Solution,
edited by Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M. & Ishak,
M.Y. Singapore: Springer. pp. 117-120.
Mallaki,
M. & Fatehi, R. 2014. Design of a biomass power plant for burning date palm waste to
cogenerate electricity and distilled water. Renewable Energy 63(C):
286-291.
Mandal,
N.K. 2014. Performance of low-cost bio adsorbents for the removal of
metal ions - A review. International Journal of Science and Research 3(1):
177-180.
Marin,
A.B.P., Ortuno, J.F., Aguilar, M.I., Meseguer, V.F., Saez, J. & Llorens, M. 2010. Use of chemical modification to
determine the binding of Cd(II), Zn(II) and Cr(III) ions by orange waste. Biochemical
Engineering Journal 53(1): 2-6.
Mavrov,
V., Stamenov, S., Todorova, E., Chmiel, H. & Erwe, T. 2006. New hybrid
electrocoagulation membrane process for removing selenium from industrial
wastewater. Desalination 201(1-3): 290-296.
Mohan,
D. & Pittman, C.U. 2007. Arsenic removal from
water/ wastewater using adsorbents - A critical review. Journal of
Hazardous Materials 142(1-2): 1-53.
Mohan,
S. & Gandhimathi, R. 2009. Removal of heavy metal ions from municipal solid waste leachate
using coal fly ash as an adsorbent. Journal of Hazardous Materials 169(1-3):
351-359.
Momcilovic,
M., Purenovic, M., Bojic,
A., Zarubica, A. & Ranđelovic,
M. 2011. Removal of lead(II) ions from aqueous solutions by
adsorption onto pine cone activated carbon. Desalination 276(1-3):
53-59.
Moore, J.W.
& Ramamoorthy, S. 1984. Heavy Metals in
Natural Waters: Applied Monitoring and Impact Assessment. New York:
Springer. pp.77-99. http://link.
springer.com/10.1007/978-1-4612-5210-8_5.
Muhammad,
M.N. & Nwaedozie, J.M. 2012. Application of marine biomass for the removal of metals from
industrial wastewater. Indian Journal of Innovations and Development 1(1):
36-44.
Namasivayam, C. & Senthilkumar, S. 1999. Adsorption of copper(II)
by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution and radiator
manufacturing industry wastewater. Separation Science and Technology 34(2):
201-217.
Narain,
S., Ojha, C.S.P., Mishra, S.K., Chaube,
U.C. & Sharma, P.K. 2011. Cadmium and chromium
removal by aquatic plant. International Journal of Environmental
Sciences 1(6): 1297-1304.
Olaofe,
O., Olagboye, S.A., Akanji,
P.S., Adamolugbe, E.Y., Fowowe,
O.T. & Olaniyi, A.A. 2015. Kinetic studies
of adsorption of heavy metals on clays. International Journal of Chemistry 7(1):
48-54.
Oller, I., Malato, S. & Sánchez-Pérez, J.A. 2011. Combination of
advanced oxidation processes and biological treatments for wastewater
decontamination - A review. Science of the Total Environment 409(20):
4141-4166.
Opeolu, B.O., Bamgbose, O., Arowolo, T.A. & Adetunji,
M.T. 2010. Utilization of biomaterials as adsorbents
for heavy metals’ removal from aqueous matrices. Scientific Research
and Essays 5(14): 1780-1787.
Paez-Hernandez,
M.E., Aguilar-Arteaga, K., Galan-Vidal, C.A., Palomar-Pardave,
M., Romero-Romo, M. & Ramirez-Silva, M.T. 2005. Mercury ions removal from aqueous solution using an activated
composite membrane. Environmental Science & Technology 39(19):
7667-7670.
Park,
D., Yun, Y.S. & Park, J.M. 2010. The past, present,
and future trends of biosorption. Biotechnology
and Bioprocess Engineering 15(1): 86-102.
Pehlivan,
E., Tran, H.T., Ouédraogo, W.K.I., Schmidt, C., Zachmann, D. & Bahadir, M.
2013. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent
for the removal of As(V) from aqueous solutions. Food
Chemistry 138(1): 133-138.
Purkayastha, D., Mishra, U.
& Biswas, S. 2014. A comprehensive review on Cd(II)
removal from aqueous solution. Journal of Water Process Engineering 2:
105-128.
Putra,
W.P., Kamari, A., Yusoff, S.N.M., Ishak, C.F.,
Mohamed, A., Hashim, N. & Isa, I.M. 2014. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using
selected waste materials: Adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences 04(01): 25-35.
Qadeer, R. & Akhtar,
S. 2005. Kinetics study of lead ion adsorption on active
carbon. Turk. J. Chem. 29: 95-99.
Qian, F., Sun,
X., Liu, Y. & Xu, H. 2013. Removal and transformation of
effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation. Environmental Technology 34(12): 1513-1520.
Rajamohan,
N., Rajasimman, M. & Dilipkumar,
M. 2014. Parametric and kinetic studies on biosorption of
mercury using modified Phoenix dactyliferabiomass. Journal of the Taiwan Institute of Chemical Engineers 45(5): 2622-2627.
Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda, R.R. & Nair,
B.U. 2010. Biosorption of cadmium metal ion from
simulated wastewaters using Hypnea valentiaebiomass: A kinetic and thermodynamic study. Bioresource Technology 101(5): 1466-1470.
Ratna Kumar, P., Chaudhari, S., Khilar,
K.C. & Mahajan, S.P. 2004. Removal of arsenic
from water by electrocoagulation. Chemosphere 55(9): 1245-1252.
Renge,
V.C., Khedkar, S.V. & Pande,
S.V. 2012. Removal of heavy metals from waste water using low cost adsorbents: A review. Scientific
Reviews & Chemical Communications 2(4): 580-584.
Riahi,
K., Mammou, A.B. & Thayer, B.B. 2009. Date-palm
fibers media filters as a potential technology for tertiary domestic wastewater
treatment. Journal of Hazardous Materials 161(2-3): 608-613.
Riaz,
M., Nadeem, R., Hanif, M.A., Ansari, T.M. & Rehman, K. 2009. Pb(II) biosorption from hazardous
aqueous streams using Gossypium hirsutum(Cotton) waste biomass. Journal of
Hazardous Materials 161(1): 88-94.
Sahu,
M.K., Mandal, S., Dash, S.S., Badhai, P. & Patel,
R.K. 2013. Removal of Pb(II) from aqueous solution by acid activated red mud. Journal
of Environmental Chemical Engineering 1(4): 1315-1324.
Saka,
C., Şahin, Ö. & Küçük,
M.M. 2012. Applications on agricultural and forest waste adsorbents for the removal of
lead (II) from contaminated waters. International Journal of Environmental
Science and Technology 9(2): 379-394.
Sankararamakrishnan,
N., Jaiswal, M. & Verma, N. 2014. Composite nanofloral clusters of carbon nanotubes and activated
alumina: An efficient sorbent for heavy metal removal. Chemical Engineering
Journal 235: 1-9.
Sciban,
M., Radetic, B., Kevresan,
Z. & Klasnja, M. 2007. Adsorption of heavy metals from electroplating wastewater by wood
sawdust. Bioresource Technology 98(2):
402-409.
Sha,
L., Xueyi, G., Ningchuan,
F. & Qinghua, T. 2009. Adsorption of
Cu2+ and Cd2+ from aqueous solution by mercapto-acetic
acid modified orange peel. Colloids and Surfaces B: Biointerfaces 73(1): 10-14.
Shahzad,
A., Miran, W., Rasool, K.,
Nawaz, M., Jang, J., Lim, S.R. & Lee, D.S. 2017. Heavy metals removal by EDTA-functionalized chitosan graphene oxide
nanocomposites. RSC Advances 7(16): 9764-9771.
Shakoor,
M.B., Niazi, N.K., Bibi, I., Murtaza,
G., Kunhikrishnan, A., Seshadri,
B., Shahid, M., Ali, S., Bolan, N.S., Ok, Y.S., Abid, M. & Ali, F. 2016. Remediation of arsenic-contaminated water using agricultural wastes
as biosorbents. Critical Reviews in
Environmental Science and Technology 46(5): 467-499.
Shyam,
R., Puri, J.K., Kaur, H., Amutha,
R. & Kapila, A. 2013. Single and
binary adsorption of heavy metals on fly ash samples from aqueous solution. Journal
of Molecular Liquids 178: 31-36.
Singh,
U. & Kaushal, R.K. 2013. Treatment of waste
water with low cost adsorbent - A review. VSRD International Journal
of Technical & Non-Technical Research 4(13): 33-42.
Sočo,
E. & Kalembkiewicz, J. 2013. Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal
fly ash. Journal of Environmental Chemical Engineering 1(3): 581-588.
Soliman,
A.M., Elwy, H.M., Thiemann, T., Majedi, Y., Labata, F.T. & Al-Rawashdeh,
N.A.F. 2016. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves. Journal of the Taiwan Institute of Chemical
Engineers 58: 264-273.
Srivastav, R.K., Gupta,
S.K., Nigam, K.D.P. & Vasudevan, P. 1993. Use of aquatic plants for the removal of heavy metals from
wastewater. International Journal of Environmental Studies 45(1):
43-50.
Srivastava,
S.K., Singh, A.K. & Sharma, A. 1994. Studies on the
uptake of lead and zinc by lignin obtained from black liquor - a paper industry
waste material. Environmental Technology 15(4): 353-361.
Tan,
G. & Xiao, D. 2009. Adsorption of cadmium ion from aqueous solution by
ground wheat stems. Journal of Hazardous Materials 164(2-3): 1359-1363.
Tan, W.T. 1985. Copper (II) adsorption by waste tea leaves and coffee powder. Pertanika 8(2): 223-230.
UN WWAP 2003. United Nations World Water Assessment Programme. The World Water Development Report 1: Water for People, Water for Life.
UNESCO: Paris, France.
Uzunoğlu,
D., Gürel, N., Özkaya, N.
& Özer, A. 2014. The single
batch biosorption of copper(II)
ions on Sargassum acinarum. Desalination and Water Treatment 52(7-9): 1514-1523.
Varga,
M., Takacs, M., Zaray, G.
& Varga, I. 2013. Comparative
study of sorption kinetics and equilibrium of chromium (VI) on charcoals
prepared from different low-cost materials. Microchemical Journal 107: 25-30.
Wang,
S. & Peng, Y. 2010. Natural zeolites as effective adsorbents in water and
wastewater treatment. Chemical Engineering Journal 156(1): 11-24.
WHO 2011. Guidelines for drinking-water
quality, World Health Organization, 20 Avenue Appia,
1211 Geneva 27, Switzerland (http://www.who.int/water_sanitation_health/
publications/2011/dwq_guidelines/en/).
Yacob, A.R.,
Mustapha, N.M., Ali, A. & Al Swaidan, H.M. 2013. One-step air pyrolysis of date
palm tree waste: Physical and morphological study. Journal of Biobased Materials and Bioenergy 7(2): 223-228.
Yadav, S.K., Singh, D.K. &
Sinha, S. 2013. Adsorption study of lead(II) onto xanthated date palm trunk: Kinetics, isotherm and
mechanism. Desalination and Water Treatment 51(34- 36): 6798-6807.
Yadav, S.K.,
Sinha, S. & Singh, D.K. 2015. Chromium(VI) removal from aqueous solution and
industrial wastewater by modified date palm trunk. Environmental Progress
& Sustainable Energy 34(2): 452-460.
Zahra, N. 2012. Lead removal from water by low
cost adsorbents: a review. Pak. J. Anal. Environ. Chem. 13(1): 01-08.
Zhang, H.,
Xiang, L., Zhang, D. & Qing, H. 2012. Treatment of landfill leachate by
internal microelectrolysis and sequent Fenton
process. Desalination and Water Treatment 47(1-3): 243-248.
Zhu, B., Fan,
T. & Zhang, D. 2008. Adsorption of copper ions from aqueous solution by citric
acid modified soybean straw. Journal of Hazardous Materials 153(1-2):
300-308.
Zwain, H.M., Vakili, M. & Dahlan, I. 2014. Waste material adsorbents for
zinc removal from wastewater: A comprehensive review. International Journal
of Chemical Engineering 2014: 1-13.
*Pengarang untuk surat-menyurat;
email: mtamin@ksu.edu.sa
|