Sains Malaysiana 47(2)(2018): 261-268

http://dx.doi.org/10.17576/jsm-2018-4702-07

 

Effects of 2,4-Di-tert-butylphenol and Selected Herbicides which Induced Lipid Peroxidation on Quantum Yield and Membrane Integrity of Weedy Plants under Dark and Light Conditions

(Kesan 2,4-Di-tert-butilfenol dan Racun Herba Lipid Peroksida Terpilih pada Hasil Kuantum dan Integriti Membran Tumbuhan Rumpai di bawah Keadaan Gelap dan Terang)

Naimah Abdul Halim1, Nyuk Ling Ma2, Ismail Sahid3 & Tse Seng Chuah1*

 

1School of Food Science and Technology, University of Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

2School of Fundamental Sciences, University of Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

3School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:  16 June 2017/Accepted:  14 August 2017

 

ABSTRACT

 

2,4-Di-tert-butylphenol (2,4-DTBP) has herbicidal properties that cause lipid peroxidation on plant tissues. The present study aimed at examining the phytotoxic effects of 2,4-DTBP compared to that of selected herbicides which induced lipid peroxidation based on quantum yield (Φ) and membrane integrity of two bioassay weed species namely Oldenlandia verticillata and Leptochloa chinensis under light and dark conditions. Laboratory assays showed reduced Φ of 2,4-DTBP- and dinoterb-treated leaf discs within the first 3 h of the dark incubation period, with further decrease during the subsequent 15 h dark period and 6 h light period. Diuron drastically reduced the Φ of the bioassay species throughout the incubation period. The Φ of glufosinate-treated O. verticillata leaf discs was marginally reduced and decreased further upon light exposure; it had no effect on the Φ of L. chinensis. Fluridone, isoxaflutole, clomazone and oxyfluorfen also had negligible effect on Φ, whereas paraquat caused a rapid reduction in Φ upon light exposure for both bioassay species. 2,4-DTBP, paraquat and dinoterb induced electrolyte leakage during the dark incubation period; this was further increased in the presence of light for O. verticillata and L. chinensis. For both bioassay species, glufosinate caused a marked amount of electrolyte leakage, whereas diuron, fluridone, isoxaflutole, clomazone and oxyfluorfen had negligible effect on ion leakage. These results suggested that 2,4-DTBP has herbicidal activity comparable to that of dinoterb without dependence on light.

 

Keywords: Electrolyte leakage; Leptochloa chinensis; Oldenlandia verticillata; photosynthesis

 

ABSTRAK

2,4-Di-tert-butilfenol (2,4-DTBP) mempunyai sifat racun herba yang menyebabkan peroksidaan lipid pada tisu tumbuhan. Kajian ini bertujuan untuk mengkaji kesan fitotoksik 2,4-DTBP berbanding racun herba lipid peroksida terpilih berdasarkan hasil kuantum (Φ) dan integriti membran melalui bioasai dua spesies rumpai iaitu Oldenlandia verticillata dan Leptochloa chinensis di bawah keadaan terang dan gelap. Asai makmal mendedahkan penurunan Φ 2,4-DTBP- dan cakera daun dinoterb yang dirawat dalam tempoh 3 jam pertama dalam inkubasi yang gelap, dengan penurunan selanjutnya dalam tempoh gelap 15 jam dan tempoh cerah 6 jam yang seterusnya. Spesies bio-asai diuron berkurang secara drastik Φ sepanjang tempoh inkubasi. Φ daripada cakera daun O. verticillata yang dirawat glufosinat telah berkurang sedikit dan terus berkurang apabila terdedah pada cahaya; ia tidak mempunyai kesan pada Φ L. chinensis. Fluridone, isoxaflutole, clomazon dan oksifluorfen juga mempunyai kesan yang tidak dapat diabaikan pada Φ, sedangkan paraquat menyebabkan pengurangan pesat dalam Φ apabila pendedahan cahaya untuk kedua spesies bioassai. 2,4-DTBP, paraquat dan kebocoran elektrolit oleh dinoterb semasa tempoh inkubasi gelap; ini semakin meningkat di hadapan cahaya untuk O. verticillata dan L. chinensis. Bagi kedua-dua spesies bioassai, glufosinat menyebabkan kebocoran elektrolit yang ketara, sedangkan diuron, fluridone, isoxaflutole, clomazon dan oksifluorfen mempunyai kesan yang tidak dapat diabaikan pada kebocoran ion. Keputusan ini menunjukkan bahawa 2,4-DTBP mempunyai aktiviti racun herba yang setanding dengan dinoterb tanpa kebergantungan pada cahaya.

 

Kata kunci: Fotosintesis; kebocoran elektrolit; Leptochloa chinensis; Oldenlandia verticillata

 

REFERENCES

 

Ajayi, G.O., Olagunju, J.A., Ademuyiwa, O. & Martins, O.C. 2011. Gas chromatography-mass spectrometry analysis and phytochemical screening of ethanolic root extract of Plumbago zeylanica. Linn. Journal of Medicinal Plants Research 5(9): 1756-1761.

Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639.

Ayala, A., Munoz, M.F. & Argüelles, S. 2014. Lipid peroxidation: production, metabolism, and signalling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal: Review article. Oxidative Medicine and Cellular Longevity 2014: Article ID. 360438.

Belbachir, O., Matringe, M., Tisut, M. & Chevallier, D. 1980a. Physiological actions of         dinoterb, a phenol derivative: 1. Physiological effects on the whole plant and on tissue    fragments of pea. Pesticide Biochemistry and Physiology 14(3): 303-308.

Belbachir, O., Matringe, M., Chevallier, D. & Tisut, M. 1980b. Physiological actions of         dinoterb, a phenol derivative: 2. Effects on isolated plant mitochondria and         chloroplasts. Pesticide Biochemistry and Physiology 14(3): 309-313.

Chuah, T.S., Norhafizah, M.Z. & Ismail, B.S. 2015. Evaluation of the biochemical and physiological activity of the natural compound, 2,4-ditert-butylphenol on weeds. Crop and Pasture Science 66(2): 214-223.

Chuah, T.S., Norhafizah, M.Z. & Ismail B.S. 2014. Phytotoxic effects of the extracts and compounds isolated from Pennisetum purpureum (Napier grass) on Leptochloa chinensis germination and seedling growth in aerobic rice system. Weed Science 62(3): 457-467.

Dayan, F.E. & Zaccaro, M.L.M. 2012. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology 102(3): 189-197.

Dayan, F.E. & Watson, S.B. 2011. Plant cell membrane as a marker for light-dependent and light independent herbicide mechanisms of action. Pesticide Biochemistry and Physiology 101(3): 182-190.

Duke, S.O. & Kenyon, W.H. 1993. Peroxidizing activity determined by cellular leakage. In Target Assays for Modern Herbicides and Related Phytotoxic Compounds, edited by Bӧger, P. & Sandmann, G. Boca Raton: Lewis Publishers. pp. 61-66.

Edreva, A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: A      submolecular approach. Agriculture, Ecosystems & Environment 106(2-3): 119-133.

Emerson, R. 1958. The quantum yield of photosynthesis. Annual Review of Plant Biology 9: 1-24.

Grossmann, K. & Ehrhardt, T. 2007. On the mechanism of action and selectivity of the corn            herbicide topramezone: A new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Management Science 63(5): 429-439.

Halim, N.A., Razak, S.B.A., Simbak, N. & Seng, C.T. 2017. 2,4-Di-tert-butylphenol-  induced leaf physiological and ultrastructural changes in chloroplasts of weedy plants. South African Journal of Botany 112: 89-94.

Harwood, J.L. 1997. Plant lipid metabolism. In Plant Biochemistry, edited by Dey, P.M. & Harborne, J.B. San Diego: Academic Press. pp. 237-271.

Hess, F.D. 2000. Light-dependent herbicides: An overview. Weed Science 48(2): 160-170.

Hossam, S.E. & Heba, I.M. 2013. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1): 44-57.

Kim, J.S., Choi, J.S., Kim, T.J., Hur, Y. & Cho, K.Y. 2001. Differential effects of herbicidal compounds on cytoplasmic leakages of green - and white - maize leaf segments. Journal of Photoscience 8(2): 61-66.

Krämer, W. & Schirmer, U. 2007. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-Vch VerlagGmbH & Co. 1: 409.

Lascano, R., Munoz, N., Robert, G., Rodriguez, M., Melchiorre, M., Trippi, V. & Quero, G. 2012. Paraquat: An oxidative stress inducer. In Herbicides - Properties, Synthesis and Control of Weeds, edited by Hasaneen, M.N. Croatia: InTech Publisher. pp. 135-148.         

Lichtenthaler, H.K., Zeidler, J., Schwender, J. & Müller, C. 2000. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Zeitschrift für Naturforschung 55(5-6):   305-313.

Malek, S.N.A., Shin, S.K., Wahab, N.A. & Yaacob, H. 2009. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 14(5): 1713-1724.

Maxwell, K. & Johnson, G.N. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51(345): 659-668.

Merlin, G. 1997. Herbicides. In Plant Ecophysiology, edited by Prasad, M.N.V. New York: John Wiley & Sons, Inc. pp. 305-342.

Monaco, T.J., Weller, S.C. & Ashton, F.M. 2002. Weed Science: Principles and Practices. 4th ed. New York: John Wiley & Sons. pp. 183-255.

Naimah, B.H. 2017. Elucidating mode of 2,4-di-tert-butylphenol action as potential natural herbicide. Master thesis. Universiti Malaysia Terengganu (Unpublished). p. 183.

Oluwatoyin, S.M., Illeogbulam, N.G. & Joseph, A. 2011. Phytochemical and antimicrobial studies on the aerial parts of Heliotropium indicum Linn. Annals of Biological Research 2: 129-136.

Rana, V.S. & Blazquez, M.A. 2007. Chemical constituents of Gynura cusimbua aerial parts.   Journal of Essential Oil Research 19(1): 21-22.

Renner, K.A. & Fausey, J.C. 2001. Environmental effects on CGA-248757 and flumiclorac efficacy/soybean tolerance. Weed Science 49(5): 668-674.

Rhoads, D.M., Umbach, A.L., Subbaiah, C.C. & Siedow, J.N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signalling. Plant Physiology 141(2): 357-366.

Sandmann, G., Schmidt, A., Linden, H. & Bӧger, P. 1991. Phytoene desaturase, the essential target for bleaching herbicides. Weed Science 39: 474-479.

Shao, N., Krieger-Liszkay, A., Schroda, M. & Beck, C.F. 2007. A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: Its use for the assay of reactive oxygen species produced in vivo. Plant Journal 50(3): 475-487.

Skorzynska-Polit, E. 2007. Lipid peroxidation in plant cells, its physiological role and changes under heavy metal stress. Acta Societatis Botanicorum Poloniae 76(1): 49-54.

Terada, H. 1990. Uncouplers of oxidative phosphorylation. Environmental Health Perspectives 87: 213-218.

 

 

*Corresponding author; email: chuahts@umt.edu.my

 

 

 

 

previous