Sains Malaysiana 47(2)(2018): 261-268
http://dx.doi.org/10.17576/jsm-2018-4702-07
Effects of 2,4-Di-tert-butylphenol
and Selected Herbicides which Induced Lipid Peroxidation on Quantum
Yield and Membrane Integrity of Weedy Plants under Dark and Light
Conditions
(Kesan 2,4-Di-tert-butilfenol dan Racun Herba Lipid Peroksida Terpilih pada Hasil
Kuantum dan Integriti Membran Tumbuhan Rumpai di bawah Keadaan Gelap dan Terang)
Naimah Abdul
Halim1, Nyuk Ling Ma2,
Ismail Sahid3 & Tse Seng Chuah1*
1School of Food Science and Technology, University of Malaysia Terengganu,
21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia
2School of Fundamental Sciences, University of Malaysia Terengganu, 21030
Kuala Terengganu, Terengganu Darul Iman, Malaysia
3School of Environmental and Natural Resource Sciences,
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 16 June 2017/Accepted: 14 August 2017
ABSTRACT
2,4-Di-tert-butylphenol (2,4-DTBP) has
herbicidal properties that cause lipid peroxidation on plant tissues.
The present study aimed at examining
the phytotoxic effects of 2,4-DTBP compared to that of selected
herbicides which induced lipid peroxidation based on quantum yield
(Φ) and membrane integrity of two bioassay
weed species namely Oldenlandia verticillata and Leptochloa chinensis under light and dark conditions. Laboratory
assays showed reduced Φ of 2,4-DTBP- and dinoterb-treated
leaf discs within the first 3 h of the dark incubation period,
with further decrease during the subsequent 15 h dark period and 6 h light period. Diuron drastically reduced the
Φ of the bioassay species throughout
the incubation period. The Φ of glufosinate-treated O. verticillata leaf discs was marginally
reduced and decreased further upon light exposure; it had no effect
on the Φ of L. chinensis. Fluridone, isoxaflutole, clomazone and oxyfluorfen
also had negligible effect on Φ, whereas paraquat caused a rapid reduction
in Φ upon light exposure for both bioassay species. 2,4-DTBP, paraquat and
dinoterb induced electrolyte leakage during the dark incubation
period; this was further increased in the presence of light for
O. verticillata and L. chinensis. For both bioassay species, glufosinate caused
a marked amount of electrolyte leakage, whereas diuron, fluridone,
isoxaflutole, clomazone and oxyfluorfen had negligible effect on
ion leakage. These results suggested that 2,4-DTBP has herbicidal
activity comparable to that of dinoterb without dependence on light.
Keywords: Electrolyte
leakage; Leptochloa chinensis; Oldenlandia verticillata; photosynthesis
ABSTRAK
2,4-Di-tert-butilfenol
(2,4-DTBP) mempunyai sifat racun herba yang menyebabkan peroksidaan
lipid pada tisu tumbuhan. Kajian ini bertujuan untuk mengkaji kesan
fitotoksik 2,4-DTBP berbanding racun herba lipid peroksida terpilih
berdasarkan hasil kuantum (Φ) dan integriti membran melalui
bioasai dua spesies rumpai iaitu Oldenlandia
verticillata dan Leptochloa
chinensis di bawah keadaan terang dan gelap. Asai makmal
mendedahkan penurunan Φ 2,4-DTBP- dan cakera daun dinoterb
yang dirawat dalam tempoh 3 jam pertama dalam inkubasi yang gelap,
dengan penurunan selanjutnya dalam tempoh gelap 15 jam dan tempoh
cerah 6 jam yang seterusnya. Spesies bio-asai diuron berkurang secara
drastik Φ sepanjang tempoh inkubasi. Φ daripada cakera
daun O. verticillata yang dirawat glufosinat telah berkurang sedikit dan terus berkurang apabila
terdedah pada cahaya; ia tidak mempunyai kesan pada Φ L.
chinensis. Fluridone, isoxaflutole, clomazon dan oksifluorfen
juga mempunyai kesan yang tidak dapat diabaikan pada Φ, sedangkan
paraquat menyebabkan pengurangan pesat dalam Φ apabila pendedahan
cahaya untuk kedua spesies bioassai. 2,4-DTBP, paraquat dan kebocoran
elektrolit oleh dinoterb semasa tempoh inkubasi gelap; ini semakin
meningkat di hadapan cahaya untuk O. verticillata
dan L. chinensis. Bagi
kedua-dua spesies bioassai, glufosinat menyebabkan kebocoran elektrolit
yang ketara, sedangkan diuron, fluridone, isoxaflutole, clomazon
dan oksifluorfen mempunyai kesan yang tidak dapat diabaikan pada
kebocoran ion. Keputusan ini menunjukkan bahawa 2,4-DTBP mempunyai
aktiviti racun herba yang setanding dengan dinoterb tanpa kebergantungan
pada cahaya.
Kata kunci:
Fotosintesis; kebocoran elektrolit; Leptochloa chinensis; Oldenlandia verticillata
REFERENCES
Ajayi, G.O., Olagunju, J.A., Ademuyiwa, O. & Martins, O.C. 2011. Gas
chromatography-mass spectrometry analysis and phytochemical screening of
ethanolic root extract of Plumbago
zeylanica. Linn. Journal of Medicinal
Plants Research 5(9): 1756-1761.
Asada, K. 1999.
The water-water cycle in chloroplasts: Scavenging of active oxygens and
dissipation of excess photons. Annual
Review of Plant Physiology and Plant Molecular Biology 50: 601-639.
Ayala, A., Munoz, M.F. & Argüelles, S. 2014. Lipid peroxidation: production,
metabolism, and signalling mechanisms of malondialdehyde and
4-hydroxy-2-nonenal: Review article. Oxidative
Medicine and Cellular Longevity 2014: Article ID. 360438.
Belbachir, O., Matringe, M., Tisut, M. &
Chevallier, D. 1980a. Physiological actions of dinoterb, a phenol
derivative: 1. Physiological effects on the whole plant and on tissue fragments of pea. Pesticide Biochemistry and Physiology 14(3): 303-308.
Belbachir, O., Matringe, M., Chevallier, D. &
Tisut, M. 1980b. Physiological actions of dinoterb, a phenol
derivative: 2. Effects on isolated plant mitochondria and chloroplasts. Pesticide Biochemistry and Physiology 14(3): 309-313.
Chuah, T.S., Norhafizah, M.Z. & Ismail, B.S. 2015. Evaluation of the biochemical and physiological activity of the
natural compound, 2,4-ditert-butylphenol on weeds. Crop and Pasture Science 66(2): 214-223.
Chuah, T.S., Norhafizah, M.Z. & Ismail B.S. 2014. Phytotoxic effects
of the extracts and compounds isolated from Pennisetum
purpureum (Napier grass) on Leptochloa
chinensis germination and seedling growth in aerobic rice system. Weed Science 62(3): 457-467.
Dayan, F.E. & Zaccaro, M.L.M. 2012. Chlorophyll
fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology 102(3): 189-197.
Dayan, F.E. & Watson, S.B. 2011. Plant cell membrane as a marker for
light-dependent and light independent herbicide mechanisms of action. Pesticide Biochemistry and Physiology 101(3):
182-190.
Duke, S.O. & Kenyon, W.H. 1993. Peroxidizing activity determined by
cellular leakage. In Target
Assays for Modern Herbicides and Related Phytotoxic Compounds,
edited by Bӧger, P. & Sandmann, G.
Boca Raton: Lewis Publishers. pp. 61-66.
Edreva, A. 2005. Generation and scavenging of reactive
oxygen species in chloroplasts: A
submolecular approach. Agriculture,
Ecosystems & Environment 106(2-3): 119-133.
Emerson, R. 1958. The quantum yield of photosynthesis.
Annual Review of Plant Biology
9: 1-24.
Grossmann, K. & Ehrhardt, T. 2007. On the mechanism of action and selectivity of the corn
herbicide topramezone: A new inhibitor of 4-hydroxyphenylpyruvate
dioxygenase. Pest Management Science 63(5): 429-439.
Halim, N.A., Razak, S.B.A., Simbak, N. & Seng, C.T.
2017. 2,4-Di-tert-butylphenol- induced leaf physiological and ultrastructural changes in chloroplasts
of weedy plants. South African Journal of
Botany 112: 89-94.
Harwood, J.L.
1997. Plant lipid metabolism. In Plant Biochemistry, edited by Dey, P.M. & Harborne, J.B. San
Diego: Academic Press. pp. 237-271.
Hess, F.D. 2000. Light-dependent herbicides: An overview. Weed Science 48(2): 160-170.
Hossam, S.E. & Heba, I.M. 2013. Reactive oxygen
species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici
Cluj-Napoca 41(1): 44-57.
Kim,
J.S., Choi, J.S., Kim, T.J., Hur, Y. & Cho, K.Y. 2001. Differential
effects of herbicidal compounds on cytoplasmic leakages of green - and white -
maize leaf segments. Journal of
Photoscience 8(2): 61-66.
Krämer, W. & Schirmer, U. 2007. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-Vch VerlagGmbH
& Co. 1: 409.
Lascano, R., Munoz, N., Robert, G., Rodriguez, M.,
Melchiorre, M., Trippi, V. & Quero, G. 2012. Paraquat: An
oxidative stress inducer. In Herbicides -
Properties, Synthesis and Control of Weeds, edited by Hasaneen, M.N.
Croatia: InTech Publisher. pp. 135-148.
Lichtenthaler, H.K., Zeidler, J., Schwender, J. & Müller, C. 2000. The non-mevalonate isoprenoid biosynthesis of plants as a test
system for new herbicides and drugs against pathogenic bacteria and the malaria
parasite. Zeitschrift für
Naturforschung 55(5-6): 305-313.
Malek, S.N.A., Shin, S.K., Wahab, N.A. & Yaacob, H. 2009. Cytotoxic components of Pereskia
bleo (Kunth) DC. (Cactaceae) leaves. Molecules 14(5): 1713-1724.
Maxwell, K. &
Johnson, G.N. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51(345):
659-668.
Merlin, G. 1997. Herbicides. In Plant
Ecophysiology, edited by Prasad, M.N.V. New York: John Wiley & Sons,
Inc. pp. 305-342.
Monaco, T.J., Weller, S.C. & Ashton, F.M. 2002. Weed Science: Principles and Practices. 4th ed. New York: John Wiley & Sons. pp. 183-255.
Naimah, B.H. 2017. Elucidating mode of 2,4-di-tert-butylphenol action as potential natural herbicide. Master thesis.
Universiti Malaysia Terengganu (Unpublished). p. 183.
Oluwatoyin, S.M., Illeogbulam, N.G. & Joseph, A. 2011. Phytochemical and antimicrobial studies on the aerial parts of Heliotropium indicum Linn. Annals of Biological Research 2: 129-136.
Rana, V.S. & Blazquez, M.A. 2007. Chemical constituents of Gynura
cusimbua aerial parts.
Journal of Essential Oil Research 19(1):
21-22.
Renner, K.A.
& Fausey, J.C. 2001. Environmental effects on CGA-248757
and flumiclorac efficacy/soybean tolerance. Weed Science 49(5): 668-674.
Rhoads, D.M., Umbach, A.L., Subbaiah, C.C. & Siedow, J.N. 2006. Mitochondrial reactive oxygen species. Contribution
to oxidative stress and interorganellar signalling. Plant Physiology 141(2): 357-366.
Sandmann, G., Schmidt, A., Linden, H. & Bӧger, P. 1991.
Phytoene desaturase, the essential target for bleaching herbicides. Weed Science 39: 474-479.
Shao, N., Krieger-Liszkay,
A., Schroda, M. & Beck, C.F. 2007. A reporter system for the individual detection of hydrogen peroxide and
singlet oxygen: Its use for the assay of reactive oxygen species
produced in
vivo. Plant Journal 50(3): 475-487.
Skorzynska-Polit, E. 2007. Lipid
peroxidation in plant cells, its physiological role and changes under heavy
metal stress. Acta Societatis Botanicorum
Poloniae 76(1): 49-54.
Terada, H. 1990. Uncouplers of oxidative
phosphorylation. Environmental
Health Perspectives 87: 213-218.
*Corresponding author; email: chuahts@umt.edu.my
|