Sains Malaysiana 47(2)(2018): 277-286

http://dx.doi.org/10.17576/jsm-2018-4702-09

 

Production of Phytase by Mitsuokella jalaludinii in Semi-Solid State Fermentation of Agricultural by-products

(Pengeluaran Fitase oleh Mitsuokella jalaludinii dalam Fermentasi Separa Pepejal Produk Sampingan Pertanian)

 

Hooi Chia Tang1, Chin Chin Sieo1, Norhani Abdullah2*, Rosfarizan Mohamad3, Abdul Rahman Omar1, Chun Wie Chong4, Anwar Fitrianto5 & Yin Wan Ho1

 

1Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

4Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia

5Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Received: 25 April 2017/Accepted: 2 August 2017

 

 

ABSTRACT

 

Phytase activity and growth of anaerobic rumen bacterium, Mitsuokella jalaludinii were investigated by semi-solid state fermentation. Carbon source (rice bran, yam and cassava), nitrogen sources (soya bean, offal meal, fish meal and feather meal) and growth factors (hemin, L-cysteine hydrochloride and minerals) were evaluated in a one-factor-at-a-time approach. Rice bran and fish meal produced better growth and phytase enzyme activity. The removal of L-cysteine hydrochloride and minerals significantly decreased (p<0.05) phytase activity from 1178.72 U to 446.99 U and 902.54 U, respectively. The response surface methods (RSM) was conducted to optimize the phytase production and the results showed the combination of 7.7% of rice bran and 3.7% of fish meal in semi-solid state fermentation gave the highest phytase activity. Maximum phytase production and optimum growth of bacteria were detected at 12 h incubation in both MF medium (control) and agro-medium. In this agro-medium, M. jalaludinii produced 2.5 fold higher phytase activity compared to MF medium.

 

Keywords: Agro-medium; Mitsuokella jalaludinii; phytase activity; response surface methods; semi-solid state fermentation

 

ABSTRAK

Aktiviti fitase dan pertumbuhan bakteria rumen anaerob, Mitsuokella jalaludinii dikaji dengan teknologi fermentasi separa pepejal. Sumber karbon (dedak beras, keladi dan ubi kayu), sumber nitrogen (kacang soya, mil organ, mil ikan dan mil bulu pelepah) serta faktor pertumbuhan (hemin, L-cystein hidroklorida dan mineral) dinilai dengan kaedah satu faktor pada satu masa. Dedak beras dan mil ikan didapati mampu menghasilkan pertumbuhan sel dan aktiviti fitase yang baik. Penyingkiran L-cysteine hidroklorida dan mineral menyebabkan penurunan aktiviti fitase yang ketara (p<0.05) masing- masing dari 1178.72 U ke 446.99 U dan 902.54 U. Kaedah gerak balas permukaan (RSM) dijalankan untuk mengoptimumkan penghasilan fitase dan keputusan menunjukkan gabungan penggunaan 7.7% dedak beras dan 3.7% mil ikan dalam proses fermentasi separa pepejal memberikan aktiviti fitase yang tertinggi. Penghasilan fitase dan pertumbuhan maksimum bakteria untuk kedua-dua media MF (kawalan) and agro-medium berlaku dalam masa eraman 12 jam. M. jalaludinii berupaya menghasilkan 2.5 kali ganda aktiviti fitase dalam agro-medium berbanding dengan media MF.

 

Kata kunci: Agro-media; aktiviti fitase; fermentasi separa pepejal; kaedah gerak balas permukaan; Mitsuokella jalaludinii

 

REFERENCES

 

Abd-Elhalem, B.T., El-Sawy, M., Gamal, R.F. & Abou-Taleb, K.A. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Sciences 60(2): 193-202.

Bhargav, S., Panda, B.P., Ali, M. & Javed, S. 2008. Solid-state fermentation: An overview. Chemical and Biochemical Engineering Quarterly 22(1): 49-70.

Bhavsar, K. & Khire, J.M. 2014. Current research and future perspectives of phytase bioprocessing. RSC Advances 4(51): 26677-26691.

Bhavsar, K., Kumar, V.R. & Khire, J.M. 2011. High level phytase production by Aspergillus niger NCIM 563 in solid state culture: Response surface optimization, up-scaling, and its partial characterization. Journal of Industrial Microbiology & Biotechnology 38(9): 1407-1417.

Bohn, L., Meyer, A.S. & Rasmussen, S.K. 2008. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B 9(3): 165-191.

Caldwell, D.R. & Bryant, M.P. 1966. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Applied Microbiology 14(5): 794-801.

Economou, C.N., Makri, A., Aggelis, G., Pavlou, S. & Vayenas, D.V. 2010. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresource Technology 101(4): 1385-1388.

Gontia-Mishra, I., Deshmukh, D., Tripathi, N., Bardiya-Bhurat, K., Tantwai, K. & Tiwari, S. 2013. Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Brazilian Journal of Microbiology 44(1): 317-323.

Heinonen, J.K. & Lathi, R.J. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry 113(2): 313-317.

Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology, edited by Norris, J.R. & Ribbons, D.W. New York: Academic Press. vol. 3B. 405 406 . pp. 117-132.

Kim, W.K., Lorenz, E.S. & Patterson, P.H. 2002. Effect of enzymatic and chemical treatments on feather solubility and digestibility. Poultry Science 81(1): 95-98.

Kim, D.S., Thomas, S. & Fogler, H.S. 2000. Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides. Applied and Environmental Microbiology 66(3): 976-981.

Konietzny, U. & Greiner, R. 2004. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology 35(1-2): 12-18.

Konietzny, U. & Greiner, R. 2002. Molecular and catalytic properties of phytatedegrading enzymes (phytases). International Journal of Food Science & Technology 37(7): 791-812..

Kumari Chitturi, C.M. & Lakshmi, V.V. 2016. Development of semi-solid state fermentation of Keratinase and optimization of process by cheaper and alternative agricultural wastes. Development 4(2): 01-04.

Lan, G.Q., Abdullah, N., Jalaludin, S. & Ho, Y.W. 2012. Effects of freezedried Mitsuokella jalaludinii culture and Natuphos® phytase supplementation on the performance and nutrient utilisation of broiler chickens. Journal of the Science of Food and Agriculture 92(2): 266-273.

Lan, G.Q., Ho, Y.W. & Abdullah, N. 2002a. Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia. International Journal of Systematic and Evolutionary Microbiology 52(3): 713-718.

Lan, G.Q., Abdullah, N., Jalaludin, S. & Ho, Y.W. 2002b. Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Letters in Applied Microbiology 35(2): 157-161.

Lei, X.G. & Porres, J.M. 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters 25(21): 1787-1794..

McKInney, K., Combs, J., Becker, P., Humphries, A., Filer, K. & Vriesekoop, F. 2015. Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Fermentation 1(1): 13-23.

Naveena, B.J., Altaf, M., Bhadrayya, K. & Reddy, G. 2004. Production of L (+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technology and Biotechnology 42(3): 147-152.

Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A. & Soccol, V.T. 2001. Production, purification and properties of microbial phytases. Bioresource Technology 77(3): 203-214.

Proszkowiec-Weglarz, M. & Angel, R. 2013. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility1. The Journal of Applied Poultry Research 22(3): 609-627.

Rastogi, N.K. & Rashmi, K.R. 1999. Optimisation of enzymatic liquefaction of mango pulp by response surface methodology. European Food Research and Technology 209(1): 57-62.

Ravindran, V., Bryden, W.L. & Kornegay, E.T. 1995. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews 6: 125-143.

Rymovicz, A.U., Souza, R.D., Gursky, L.C., Rosa, R.T., Trevilatto P.C., Groppo, F.C. & Rosa, E.A. 2011. Screening of reducing agents for anaerobic growth of Candida albicans SC5314. Journal of Microbiological Methods 84(3): 461-466.

Sanchez, S. & Demain, A.L. 2008. Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology 1(4): 283-319.

Satyanarayana, T., Johri, B.N. & Prakash, A. 2012. Microorganisms in Sustainable Agriculture and Biotechnology.New York: Springer Science & Business Media.

Shu, G., Yang, Q. & He, C. 2013. Effect of ascorbic acid and cysteine hydrochloride on growth of Bifidobacterium bifidum. Advance Journal of Food Science and Technology 5(6): 678-681.

Sibi, G. 2015. Low cost carbon and nitrogen sources for higher microalgal biomass and lipid production using agricultural wastes. Journal of Environmental Science and Technology 8(3): 113-121.

Yanke, L.J., Bae, H.D., Selinger, L.B. & Cheng, K.J. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiology 144(6): 1565-1573.

Young, V.R. & Pellett, P.L. 1994. Plant proteins in relation to human protein and amino acid nutrition. The American Journal of Clinical Nutrition 59(5): 1203S-1212S.

  *Corresponding author; email: norhani.biotech@gmail.com

 

 

 

 

previous