Sains Malaysiana 47(2)(2018): 277-286
http://dx.doi.org/10.17576/jsm-2018-4702-09
Production
of Phytase by Mitsuokella jalaludinii in Semi-Solid State Fermentation of Agricultural by-products
(Pengeluaran
Fitase oleh Mitsuokella jalaludinii dalam Fermentasi Separa Pepejal Produk Sampingan Pertanian)
Hooi Chia
Tang1, Chin Chin Sieo1, Norhani Abdullah2*, Rosfarizan
Mohamad3, Abdul Rahman Omar1, Chun Wie Chong4,
Anwar Fitrianto5 & Yin Wan Ho1
1Institute of Bioscience,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Tropical
Agriculture and Food Security, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of
Bioprocess Technology, Faculty of Biotechnology and Biomolecular
Sciences, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan,
Malaysia
4Department of
Life Sciences, School
of Pharmacy, International
Medical University, 57000 Bukit Jalil,
Kuala Lumpur, Wilayah Persekutuan, Malaysia
5Department of
Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 25
April 2017/Accepted: 2 August 2017
ABSTRACT
Phytase
activity and growth of anaerobic rumen bacterium, Mitsuokella jalaludinii were investigated by semi-solid state
fermentation. Carbon source (rice bran, yam and cassava), nitrogen sources
(soya bean, offal meal, fish meal and feather meal) and growth factors (hemin,
L-cysteine hydrochloride and minerals) were evaluated in a one-factor-at-a-time
approach. Rice bran and fish meal produced
better growth and phytase enzyme activity. The removal of L-cysteine
hydrochloride and minerals significantly decreased (p<0.05) phytase activity from 1178.72 U
to 446.99 U and 902.54 U, respectively. The response
surface methods (RSM) was conducted to optimize the phytase production and the
results showed the combination of 7.7% of rice bran and 3.7% of fish meal in
semi-solid state fermentation gave the highest phytase activity. Maximum phytase production and
optimum growth of bacteria were detected at 12 h incubation in both MF medium
(control) and agro-medium. In this agro-medium, M. jalaludinii produced 2.5 fold higher phytase activity compared to MF medium.
Keywords: Agro-medium; Mitsuokella jalaludinii; phytase activity; response surface
methods; semi-solid state fermentation
ABSTRAK
Aktiviti fitase
dan pertumbuhan bakteria rumen anaerob, Mitsuokella jalaludinii dikaji dengan teknologi fermentasi separa
pepejal. Sumber karbon (dedak beras, keladi dan ubi kayu),
sumber nitrogen (kacang soya, mil organ, mil ikan dan mil bulu pelepah) serta
faktor pertumbuhan (hemin, L-cystein hidroklorida dan mineral) dinilai dengan
kaedah satu faktor pada satu masa. Dedak beras dan mil ikan didapati mampu
menghasilkan pertumbuhan sel dan aktiviti fitase yang baik. Penyingkiran L-cysteine hidroklorida dan mineral
menyebabkan penurunan aktiviti fitase yang ketara (p<0.05) masing-
masing dari 1178.72 U ke 446.99 U dan 902.54 U. Kaedah gerak balas permukaan (RSM) dijalankan untuk
mengoptimumkan penghasilan fitase dan keputusan menunjukkan gabungan penggunaan 7.7% dedak
beras dan 3.7% mil ikan dalam proses fermentasi separa pepejal memberikan
aktiviti fitase yang tertinggi. Penghasilan fitase dan
pertumbuhan maksimum bakteria untuk kedua-dua media MF (kawalan) and
agro-medium berlaku dalam masa eraman 12 jam. M. jalaludinii berupaya menghasilkan 2.5 kali ganda aktiviti fitase dalam agro-medium
berbanding dengan media MF.
Kata kunci:
Agro-media; aktiviti fitase; fermentasi separa pepejal; kaedah gerak balas
permukaan; Mitsuokella
jalaludinii
REFERENCES
Abd-Elhalem,
B.T., El-Sawy, M., Gamal, R.F. & Abou-Taleb, K.A. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some
agro-industrial by-products. Annals
of Agricultural Sciences 60(2):
193-202.
Bhargav, S.,
Panda, B.P., Ali, M. & Javed, S. 2008. Solid-state fermentation: An overview. Chemical and Biochemical Engineering Quarterly 22(1):
49-70.
Bhavsar, K. & Khire, J.M. 2014. Current research
and future perspectives of phytase bioprocessing. RSC Advances 4(51):
26677-26691.
Bhavsar, K., Kumar, V.R. & Khire, J.M. 2011. High
level phytase production by Aspergillus
niger NCIM 563 in solid state culture: Response surface optimization, up-scaling, and its
partial characterization. Journal of Industrial Microbiology & Biotechnology 38(9): 1407-1417.
Bohn, L., Meyer, A.S. & Rasmussen, S.K. 2008. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of
Zhejiang University Science B 9(3): 165-191.
Caldwell,
D.R. & Bryant, M.P. 1966. Medium without rumen fluid for
nonselective enumeration and isolation of rumen bacteria. Applied Microbiology 14(5): 794-801.
Economou, C.N., Makri, A., Aggelis, G., Pavlou, S. & Vayenas, D.V.
2010. Semi-solid state fermentation of
sweet sorghum for the biotechnological production of single cell oil. Bioresource Technology 101(4): 1385-1388.
Gontia-Mishra, I., Deshmukh, D., Tripathi, N., Bardiya-Bhurat, K.,
Tantwai, K. & Tiwari, S. 2013. Isolation, morphological and molecular
characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Brazilian Journal of Microbiology 44(1):
317-323.
Heinonen, J.K. & Lathi, R.J. 1981. A new and
convenient colorimetric determination of inorganic orthophosphate and its
application to the assay of inorganic pyrophosphatase. Analytical Biochemistry 113(2): 313-317.
Hungate, R.E.
1969. A roll tube
method for cultivation of strict anaerobes. In Methods in Microbiology, edited by Norris, J.R. & Ribbons, D.W. New York: Academic Press. vol. 3B. 405 406 . pp.
117-132.
Kim, W.K., Lorenz, E.S. & Patterson, P.H. 2002. Effect of enzymatic and chemical treatments on feather
solubility and digestibility. Poultry Science 81(1):
95-98.
Kim, D.S.,
Thomas, S. & Fogler, H.S. 2000. Effects of pH and trace
minerals on long-term starvation of Leuconostoc
mesenteroides. Applied and Environmental Microbiology 66(3):
976-981.
Konietzny, U.
& Greiner, R. 2004. Bacterial phytase: Potential
application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology 35(1-2): 12-18.
Konietzny, U.
& Greiner, R. 2002. Molecular and catalytic properties of
phytate‐degrading
enzymes (phytases). International Journal
of Food Science & Technology 37(7): 791-812..
Kumari Chitturi, C.M. & Lakshmi, V.V. 2016. Development
of semi-solid state fermentation of Keratinase and optimization
of process by cheaper and alternative agricultural wastes.
Development 4(2): 01-04.
Lan, G.Q., Abdullah, N., Jalaludin, S. & Ho, Y.W. 2012. Effects of freeze‐dried Mitsuokella jalaludinii culture and Natuphos® phytase
supplementation on the performance and nutrient utilisation of broiler chickens. Journal of the Science of Food and
Agriculture 92(2): 266-273.
Lan, G.Q., Ho, Y.W. & Abdullah, N. 2002a. Mitsuokella jalaludinii sp.
nov., from the rumens of cattle in Malaysia. International Journal
of Systematic and Evolutionary Microbiology 52(3): 713-718.
Lan, G.Q., Abdullah, N., Jalaludin, S. & Ho, Y.W. 2002b. Optimization of carbon and nitrogen sources for phytase production by Mitsuokella
jalaludinii, a new rumen bacterial species. Letters in Applied Microbiology 35(2): 157-161.
Lei,
X.G. & Porres, J.M. 2003. Phytase enzymology,
applications, and biotechnology. Biotechnology Letters 25(21):
1787-1794..
McKInney, K., Combs, J., Becker, P., Humphries, A.,
Filer, K. & Vriesekoop, F. 2015. Optimization of phytase production from Escherichia coli by
altering solid-state fermentation conditions. Fermentation 1(1): 13-23.
Naveena,
B.J., Altaf, M., Bhadrayya, K. & Reddy, G. 2004. Production of L (+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation
using wheat bran. Food Technology and Biotechnology 42(3):
147-152.
Pandey,
A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A. & Soccol, V.T. 2001. Production, purification and properties of microbial
phytases. Bioresource Technology 77(3):
203-214.
Proszkowiec-Weglarz, M. & Angel, R. 2013. Calcium and phosphorus metabolism in broilers: Effect of homeostatic
mechanism on calcium and phosphorus digestibility1. The Journal of
Applied Poultry Research 22(3): 609-627.
Rastogi, N.K. & Rashmi, K.R. 1999. Optimisation of
enzymatic liquefaction of mango pulp by response surface methodology. European
Food Research and Technology 209(1): 57-62.
Ravindran, V., Bryden, W.L. & Kornegay, E.T. 1995. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews 6:
125-143.
Rymovicz,
A.U., Souza, R.D., Gursky, L.C., Rosa, R.T., Trevilatto P.C., Groppo, F.C.
& Rosa, E.A. 2011. Screening of reducing agents for anaerobic growth of Candida
albicans SC5314. Journal of Microbiological Methods 84(3):
461-466.
Sanchez, S.
& Demain, A.L. 2008. Metabolic regulation and
overproduction of primary metabolites. Microbial Biotechnology 1(4): 283-319.
Satyanarayana, T., Johri, B.N. & Prakash, A. 2012. Microorganisms in Sustainable Agriculture and Biotechnology.New York: Springer Science & Business Media.
Shu, G., Yang, Q. & He, C. 2013. Effect of ascorbic acid and
cysteine hydrochloride on growth of Bifidobacterium
bifidum. Advance Journal of Food Science and Technology 5(6):
678-681.
Sibi, G. 2015. Low cost carbon and nitrogen sources for higher microalgal biomass and lipid production using agricultural wastes. Journal of Environmental Science and
Technology 8(3): 113-121.
Yanke, L.J., Bae, H.D., Selinger, L.B. & Cheng, K.J. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiology 144(6):
1565-1573.
Young, V.R.
& Pellett, P.L. 1994. Plant proteins in relation to human
protein and amino acid nutrition. The American Journal of Clinical Nutrition 59(5): 1203S-1212S.
*Corresponding author; email: norhani.biotech@gmail.com