Sains Malaysiana 47(2)(2018): 295-302
http://dx.doi.org/10.17576/jsm-2018-4702-11
Identification of Drought Tolerant Maize Genotypes and Seedling
based Morpho-Physiological Selection Indices for Crop Improvement
(Pengenalpastian Genotip Jagung yang Tahan Kemarau dan Indeks
Pemilihan Morfo-Fisiologi berasaskan Anak Benih untuk Pembaikan
Tanaman)
Fahad Masoud Wattoo1, Rashid Mehmood Rana1,
Sajid Fiaz2*, Syed Adeel Zafar3, Mehmood Ali
Noor4, Hafiz Mumtaz Hassan5, Muhammad Husnain
Bhatti6, Shoaib ur Rehman4, Galal Bakr Anis7
& Rai Muhammad Amir8
1Department of Plant Breeding & Genetics,
PMAS-Arid Agriculture University, Rawalpindi, Pakistan
2State Key Laboratory of Rice Biology, China
National Rice Research Institute, Hangzhou 310006, China
3National Key Facility of Crop Gene
Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
4Institute of Crop Science, Chinese
Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology,
Ministry of Agriculture, Beijing 100081, China
5Nuclear Institute for Agriculture and
Biology, Jhang Rd, Faisalabad, Pakistan
6Ayub Agriculture Research Institute, Jhang
Rd, Faisalabad, Pakistan
7Field Crop Research Institute, Agriculture
Research Centre, Egypt
8Institute of Food and Nutritional Sciences,
PMAS-Arid Agriculture University Rawalpindi, Pakistan
Received: 28 May 2017/Accepted: 14 August 2017
ABSTRACT
Maize is an imperative
grain crop used as a staple food in several countries around the world. Water
deficiency is a serious problem limiting its growing area and production. Identification
of drought tolerant maize germplasm is comparatively easy and sustainable
approach to combat this issue. Present research was conducted to evaluate 50
maize genotypes for drought tolerance at early growth stage. Drought tolerance
was assessed on the basis of several morphological and physiological
parameters. Analysis of variance showed significant variation among the tested
maize genotypes for recorded parameters. Principal component
analysis revealed important morpho-physiological traits that were playing key
role in drought tolerance. Correlation studies depicted significant positive
correlation among the attributes such as fresh shoot length (FSL), fresh root
length (FRL), dry shoot weight (DSW), dry root weight (DRW), relative water
contents (RWC) and total dry matter (TDM) while a strongly negative correlation
was observed among RWC and excised leaf water loss. Results concluded that the
parameters fresh shoot weight, fresh root weight, FRL, DRW, TDM, cell membrane
thermo stability (CMT) and RWC can be useful for rapid screening of maize
germplasm for drought tolerance at early growth stages. Furthermore, the
genotypes 6, 16, 18, 40, 45 and 50 can be used as a drought tolerant check in
breeding programs. Moreover, biplot analysis along with other indices was
proved to be a useful approach for rapid and cost efficient screening of large
number of genotypes against drought stress condition.
Keywords: Cell membrane
thermo stability; correlation; drought tolerance; principal component analysis;
relative water contents
ABSTRAK
Jagung
adalah tanaman bijirin penting yang digunakan sebagai makanan ruji
di beberapa negara di seluruh dunia. Kekurangan air adalah
masalah serius yang membatasi kawasan dan pengeluarannya yang semakin
meningkat. Pengenalpastian germplasma
jagung yang tahan kemarau adalah pendekatan yang agak mudah dan
mampan untuk memerangi isu ini. Penyelidikan
kini dijalankan untuk menilai 50 genotip jagung untuk toleransi
kemarau pada peringkat pertumbuhan awal. Ketahanan kemarau dinilai berdasarkan beberapa parameter morfologi
dan fisiologi. Analisis varians menunjukkan
variasi ketara antara genotip jagung yang diuji untuk parameter
yang direkodkan. Analisis komponen utama
mendedahkan ciri morfo-fisiologi yang memainkan peranan penting
dalam ketahanan kemarau. Kajian korelasi menunjukkan korelasi
positif yang signifikan antara ciri seperti panjang pucuk segar
(FSL), panjang akar segar (FRL), berat pucuk kering (DSW), berat
akar kering (DRW), kandungan air relatif (RWC) dan jumlah bahan
kering (TDM) manakala korelasi yang sangat negatif diperhatikan
dalam kalangan RWC dan mengurangkan kehilangan air daun. Keputusannya
menyimpulkan bahawa parameter pucuk berat baru, berat akar segar,
FRL, DRW, TDM, kestabilan thermo membran sel (CMT) dan RWC adalah
berguna untuk penapisan pantas germplasma jagung untuk ketahanan
kemarau pada peringkat pertumbuhan awal. Selain itu, genotip 6, 16, 18, 40, 45 dan 50 boleh digunakan sebagai
pemeriksaan ketahanan kemarau dalam program pembiakan. Selain
itu, analisis biplot bersama-sama dengan indeks lain telah terbukti
merupakan pendekatan yang berguna untuk penapisan pantas dan cekap
kos untuk sejumlah besar genotip terhadap keadaan tekanan
kemarau.
Kata kunci: Analisis
komponen utama; kandungan air relatif; kestabilan thermo membran sel; ketahanan
kemarau; korelasi
REFERENCES
Abbasi, G.H., Ijaz, M., Akhtar, J., Anwar Ul-Haq, M., Jamil,
M., Ali, S., Ahmad, R. & Khan, H.N. 2016. Profiling of anti-oxidative
enzymes and lipid peroxidation in leaves of salt tolerant and salt sensitive
maize hybrids under NaC1 and Cd stress. Sains
Malaysiana 45(2): 177-184.
Ahmadzadeh, A. 1997. Determination of the best drought tolerance
index in selected maize (Zea
mays L.) lines, MSc.
Thesis, Tehran University, Tehran, Iran (Unpublished).
Ali, M.A., Niaz, S., Abbas, A., Sabir, W. & Jabran, K.
2009. Genetic diversity and assessment of drought tolerant sorghum landraces
based on morph-physiological traits at different growth stages. Plant Omics 2(5): 214-227.
Ali, Q., Ahsan, M., Mustafa, H.S.B. & Hasan, E.U. 2013.
Studies of genetic variability and correlation among morphological traits of
maize (Zea mays L.) at seedling
stage. Albanian Journal of Agricultural
Sciences 12(3): 405-410.
Ali, Q., Elahi, M., Ahsan, M., Tahir, M.H.N. & Basra,
S.M.A. 2011. Genetic evaluation of maize (Zea
mays L.) genotypes at seedling stage under moisture stress. International Journal for Agro Veterinary
and Medical Sciences 5(2): 184-193.
Ali, Z., Salam, A., Azhar, F.M., Khan, I.A., Khan, A.A.,
Bahadur, S., Mahmood, T., Ahmad, A. & Trethowan, R. 2012. The response of
genetically distinct bread wheat genotypes to salinity stress. Plant Breeding 131(6): 707-715.
Amini, Z., Khodambashi, M. & Houshmand, S. 2013.
Correlation and path coefficient analysis of seed yield related traits in maize. International Journal of Agriculture and
Crop Sciences 5(19): 2217-2220.
Gonzales, A. & Ayerbe, L. 2011. Response of coleoptiles
to water deficit: Growth, turgor maintenance and osmotic adjustment in barley
plants (Hordeum vulgare L.). Agricultural Sciences 2(3): 159-166.
Bayoumi, T.Y., Eid, M.H. & Metwali,
E.M. 2008. Application of physiological and biochemical indices as a screening
technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7(14): 2341-2352.
Brown-Guedira, G.L., Thompson, J.A.,
Nelson, R.L. & Warburton, M.L. 2000. Evaluation of genetic diversity of
soybean introductions and North American ancestors using RAPD and SSR markers. Crop Science 40(3): 815-823.
Chohan, M.S.M., Saleem, M., Ahsan, M.
& Asghar, M. 2012. Genetic analysis of water stress tolerance and various
morpho-physiological traits in (Zea mays L.) using graphical approach. Pakistan
Journal of Nutrition 11(5): 489-500.
Clarke, J.M. & Townley-Smith, T.F.
1986. Heritability and relationship to yield of excised-leaf water retention in
durum wheat. Crop Science 26(2):
289-292.
De La Cruz, M., Roberto, L.R., Adrián, E.
& Maestre, F.T. 2008. Where do seedlings go? A spatio‐temporal
analysis of seedling mortality in a semi‐arid
gypsophyte. Ecography 31(6): 720-730.
Egilla, J.N., Davies, F.T. & Boutton.
T.W. 2005. Drought stress influences leaf water content, photosynthesis, and
water-use efficiency of Hibiscus rosa-sinensis at three potassium
concentrations. Photosynthetica 43(1): 135-140.
Frova, C., Krajewski, P., Fonzo, N.D.,
Villa, M. & Sari-Gorla, M. 1999. Genetic analysis of drought tolerance in
maize by molecular markers I. Yield components. Theoretical and Applied Genetics 99(1-2): 280-288.
Garc?́a-Mata, C. & Lamattina, L.
2001. Nitric oxide induces stomatal closure and enhances the adaptive plant
responses against drought stress. Plant
Physiology 126(3): 1196-1204.
Guttieri, M., Bowen, D., Dorsch, J.A.,
Raboy, V. & Souza, E. 2004. Identification and characterization of a low
phytic acid wheat. Crop Science 44(2): 418-424.
Ibrahim, A.M.H. & Quick, J.S. 2001.
Genetic control of high temperature tolerance in wheat as measured by membrane
thermal stability. Crop Science 41(5): 1405-1407.
Jaleel, C.A., Manivannan, P., Lakshmanan,
G.M.A., Gomathinayagam, M. & Panneerselvam. R. 2008. Alterations in
morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water
deficits. Colloids and Surfaces B:
Biointerfaces 61(2): 298-303.
Javed, I. 2012. Genetics of some potential
parameters in Zea mays L. under normal
and moisture deficit conditions, University of Agriculture, Faisalabad
(Unpublished).
Kashiwagi, J., Krishnamurthy, L.,
Upadhyaya, H.D., Krishna, H., Chandra, S., Vadez, V. & Serraj, R. 2005.
Genetic variability of drought-avoidance root traits in the mini-core germplasm
collection of chickpea (Cicer arietinum L.). Euphytica 146(3): 213-222.
Khan, N.H., Ahsan, M., Saleem, M. &
Ali, A. 2014. Genetic association among various morpho-physiological traits of Zea mays under drought condition. Life Science Journal 11: 112-122.
Khodarahmpour, Z. & Hamidi, J. 2011.
Evaluation of drought tolerance in different growth stages of maize (Zea mays L.) inbred lines using
tolerance indices. African Journal of
Biotechnology 10(62): 13482-13490.
Kirigwi, F.M., Ginkel, M.V., Trethowan,
R., Sears, R.G., Rajaram, S. & Paulsen, G.M. 2004. Evaluation of selection
strategies for wheat adaptation across water regimes. Euphytica 135(3): 361-371.
Kitajima, K. & Fenner, M. 2000.
Ecology of seedling regeneration. In Seeds,
the Ecology of Regeneration in Plant Communities, edited by Fenner, M.
Oxforshire: CABI. pp. 331-359.
Meeks, M., Murray, S.C., Hague, S. &
Hays, D. 2013. Measuring maize seedling drought response in search of tolerant
germplasm. Agronomy 3(1): 135-147.
Mehdi, S.S., Ahmad, N. & Ahsan, M.
2001. Evaluation of S1 maize (Zea mays L.) families at seedling stage under drought conditions. Online Journal of Biological Sciences 1: 4-6.
Mustafa, H.S.B., Ahsan, M., Aslam, M.,
Ali, Q., Bibi, T., Hasan, E. & Mehmood, T. 2013. Genetic variability and
traits association in maize (Zea mays L.) accessions under drought stress. Journal
of Agricultural Research 51(3): 231-238.
Neelima, S. & Reddy, V.C. 2008.
Genetic parameters of yield and fibre quality traits in American cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research 42(1): 67-70.
Nour, A.E.M. & Weibel, D.E. 1978.
Evaluation of root characteristics in grain sorghum. Agronomy Journal 70(2): 217-218.
Nzuve, F., Githiri, S., Mukunya, D.M.
& Gethi, J. 2014. Genetic variability and correlation studies of grain
yield and related agronomic traits in maize. Journal of Agricultural Science 6(9): 166-176.
Qayyum, A., Razzaq, A., Ahmad, M. &
Jenks, M.A. 2011. Water stress causes differential effects on germination
indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology 10(64): 14038-14045.
Rezaeieh, K.A. & Eivazi, A. 2011.
Evaluation of morphological characteristics in five Persian maize (Zea mays L.) under drought stress. African Journal of Agricultural Research 6(18): 4409-4411.
Seghatoleslami, M.J., Kafi, M. &
Majidi, E. 2008. Effect of drought stress at different growth stages on yield
and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany 40(4): 1427-1432.
Shrimali, M. 2001. Studies on
morphological parameters contributing to drought tolerance in cereals. India New Botanist 28(1/4): 91.
Singh, B.D. & Singh. B.D. 1999. Plant Breeding: Principles and Methods. New
Delhi: Kalyani Publishers.
Taiz, L. & Zeiger, E. 2006. Stress
physiology. In Plant Physiology. 4th
ed. Massachusetts: Sinauer Associates, Inc.
Thiry, A.A., Dulanto, P.N.C., Reynolds,
M.P. & Davies, W.J. 2016. How can we improve crop genotypes to increase
stress resilience and productivity in a future climate? A new crop screening
method based on productivity and resistance to abiotic stress. Journal of Experimental Botany 67(19):
5593-5603.
Waqas, M.A., Khan, I., Akhter, M.J.,
Noor, M.A. & Ashraf, U. 2017. Exogenous application of plant growth
regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environmental Science and Pollution Research
International 24(12): 11459-11471. doi: 10.1007/s11356-017-8768-0.
Wu, Y. & Cosgrove, D.J. 2000.
Adaptation of roots to low water potentials by changes in cell wall
extensibility and cell wall proteins. Journal
of Experimental Botany 51(350): 1543-1553.
Zafar, S.A., Hameed,
A., Khan, A.S. & Ashraf, M. 2017. Heat shock induced
morpho-physiological response in indica rice (Oryza sativa L.) at early seedling stage. Pakistan Journal of Botany 49(2): 453-463.
Zafar, S.A., Shokat, S., Ahmed, H.G.M., Khan, A.,
Ali, M.Z. & Atif, R.M. 2015. Assessment of salinity tolerance in rice
using seedling based morpho-physiological indices. Advancement in Life Sciences 2(4): 142-149.
*Corresponding author;
email: fiazsajid05@yahoo.com
|