Sains Malaysiana 47(2)(2018): 309-318

http://dx.doi.org/10.17576/jsm-2018-4702–13

 

A Comparative Study between Tilapia (Oreochromis niloticus) By-product and Tilapia Protein Hydrolysate on Angiotensin I-converting Enzyme (ACE) Inhibition Activities and Functional Properties

(Kajian Perbandingan antara Hidrolisat Protein Bahan Sampingan Tilapia dan Otot Tilapia (Oreochromis niloticus) terhadap Perencatan Enzim Pengubah Angiotensin (ACE) dan Sifat Kefungsian)

  

JUMARDI ROSLAN1, SITI MAZLINA MUSTAPA KAMAL2*, KHAIRUL FAEZAH MD.

YUNOS2 & NORHAFIZAH ABDULLAH3

 

1Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Negeri di Bawah Bayu, Malaysia

2Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Chemical and Environmental Engineering, Faculty of Engineering
Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 6 December 2016/Accepted: 17 July 2017

 

ABSTRACT

Tilapia is a popular freshwater fish and among the important cultured fish grown worldwide. In this study, fish protein hydrolysate was produced from tilapia (Oreochromis niloticus) by-product (TB) and tilapia muscle (TM) through enzymatic hydrolysis using alcalase. The TB and TM protein hydrolysates were evaluated for its characteristics in terms of angiotensin I-converting enzyme (ACE) inhibition activity, peptide size distribution, and functional properties. Hydrolysis for 1 h for TB and TM successfully produced low molecular weight peptides (<14.2kDa) with the highest ACE inhibitory activities. The findings also demonstrated that both samples have high nitrogen solubility (>80% at pH2-9) and good emulsifying, water and oil holding capacities. The study indicated that tilapia protein hydrolysates have the potential to be used as functional food products.

 

Keywords: Aangiotensin I-converting enzyme (ACE) inhibition activity; functional properties; Tilapia by-product protein hydrolysate; tilapia muscle protein hydrolysate

 

ABSTRAK

Tilapia (Oreochromis niloticus) merupakan ikan air tawar terkenal dan antara ikan terpenting yang diternak di seluruh dunia. Dalam kajian ini, hidrolisat protein ikan telah dihasilkan daripada bahan sampingan tilapia (TB) dan otot tilapia (TM) melalui hidrolisis berenzim menggunakan alkalase. Hidrolisat protein TB dan TM dinilai ciri-cirinya daripada segi aktiviti perencatan enzim pengubah angiotensin (ACE), taburan saiz peptida dan sifat kefungsian. Hidrolisis selama 1 jam berjaya menghasilkan peptida dengan berat molekul rendah (<14.2kDa) dengan aktiviti perencatan ACE yang tertinggi. Keputusan penemuan juga menunjukkan bahawa kedua-dua hidrolisat protein mempunyai kelarutan nitrogen yang tinggi (>80% pada pH2-9), dan kapasiti mengemulsi, memegang air dan memegang minyak yang baik. Kajian ini menunjukkan bahawa hidrolisat protein tilapia mempunyai potensi untuk digunakan sebagai produk makanan berfungsi.

 

Kata kunci: Hidrolisat protein bahan sampingan tilapia; hidrolisat protein otot tilapia; perencatan aktiviti enzim pengubah angiotensin (ACE); sifat kefungsian

 

 

 

REFERENCES

 

Adler-Nissen, J. 1986. Enzymatic Hydrolysis of Food Proteins; Oxford, UK, Elsevier Applied Science Publishers.

Amiza, M.A., Ow, Y.W. & Faazaz, A.L. 2013. Physicochemical properties of silver catfish (Pangasius sp.) frame hydrolysate. International Food Research Journal 20(3): 1255-1262.

Amiza, M.A., Nurul Ashikin, S. & Faazaz, A.L. 2011. Optimization of enzymatic protein hydrolysis from silver catfish (Pangasius sp.) frame. International Food Research Journal 18: 775-781.

Aspmo, S.I., Horn, S.J. & Eijsink, V.G.H. 2005. Enzymatic hydrolysis of atlantic cod (Gadus morhua L.) viscera. Process Biochemistry 40: 1957-1966.

Balti, R., Bougatef, A., Ali, N.E.H., Zekri, D., Barkia, A. & Nasri, M. 2010. Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of the Science of Food and Agriculture 90(12): 2006-2014.

Benjakul, S. & Morrissey, M.T. 1997. Protein Hydrolysates from pacific whiting solid wastes. Journal of Agricultural and Food Chemistry 45: 3423-3430.

Bougatef, A., Nedjar-Arroume, N., Ravallec-Ple, R., Leroy, Y., Guillochon, D. & Barkia, A. 2008. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry 111: 350-356.

Chalamaiah, M., Kumar, B.D., Hemalatha, R. & Jyothirmayi, T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry 135: 3020-3038.

Church, F.C., Swaisgood, H.E., Porter, D.H. & Catignani, G.L. 1983. Spectrophotometric assay using O-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 66: 1219-1227.

Damodaran, S. 2008. Amino acids, peptides, and proteins. In Food Chemistry. 4th ed., edited by  Damodaran, S., Parkin, K.L. & Fennema, O.R. New York: CRC Press, Taylor & Francis Group. pp. 217-329.

Dekkers, E., Raghavan, S., Kristinsson, H.G. & Marshall, M.R. 2011. Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry 124: 640-645.

Diniz, F.M. & Martin, A.M. 1997. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensmittel-Wissenschaft und-Technologie 30: 266-272.

Fahmi, A., Morimura, S., Guo, H.C., Shigematsu, T., Kida, K. & Uemura, Y. 2004. Production of angiotensin I-converting enzyme inhibitory peptides from sea bream scales. Process Biochemistry 39: 1195-1200.

Foh, M.B.K., Kamara, M.T., Amadou, I., Foh, B.M. & Wenshui, X. 2011. Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. International Journal of Biological Chemistry 5: 21-36.

Gbogouri, G.A., Linder, M., Fanni, J. & Parmentier, M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. Journal of Food Science 69: 615-622.

Guerard, F., Dufosse, L., De La Broise, D. & Binet, A. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis B: Enzymatic 11: 1051-1059.

Je, J.Y., Park, P.J., Kwon, J.Y. & Kim, S.K. 2004. A novel angiotensin I-converting enzyme inhibitory peptide from alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry 52: 7842-7845.

Jimsheena, V.K. & Gowda, R. 2009. Colorimetric. High-throughput assay for screening angiotensin I-converting enzyme inhibitors. Analytical Chemistry 81: 9388-9394.

Jung, W.K., Mendis, E., Je, J.Y., Park, P.J., Son, B.W., Kim, H.C., Choi, Y.K. & Kim, S.K. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 94: 26-32.

Kim, S.K. & Mendis, E. 2006. Bioactive compounds from marine processing byproducts. Food Research International 39: 383-393.

Kim, S.K., Byun, H.G., Park, P.J. & Shahidi, F. 2001. Angiotensin I-converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry 49: 2992-2997.

Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102: 1317-1327.

Kristinsson, H.G. & Rasco, B.A. 2000. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48: 657-666.

Lalasidis, G., Bostrom, S. & Sjoberg, L.B. 1978. Low molecular weight enzymatic fish protein hydrolysates: Chemical composition and nutritive value. Journal of Agricultural and Food Chemistry 26: 751-756.

Lee, S.H., Qian, Z.J. & Kim, S.K. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 118: 96-102.

Liaset, B., Lied, E. & Espe, M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry: Chemical characterisation and nutritional evaluation. Journal of the Science of Food and Agriculture 80: 581-589.

Ngo, D.H., Qian, Z.J., Ryu, B.M., Park, J.W. & Kim, S.K. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods 2: 107-117. 

Nielsen, P.M., Petersen, D. & Dambmann, C. 2001. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 66: 642-646.

Ondetti, M.A. 1977. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 196: 441-444.

Quaglia, G.B. & Orban, E. 1990. Influence of enzymatic hydrolysis on structure and emulsifying properties of sardine (Sardina pilchardus) protein hydrolysates. Journal of Food Science 55: 1571-1573.

Raghavan, S. & Kristinsson, H.G. 2009. ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry 117: 582-588.

Roslan, J., Mustapa Kamal, S.M., Md. Yunos, K.F. & Abdullah, N. 2015. Optimization of enzymatic hydrolysis of Tilapia (Oreochromis niloticus) by-product using response surface methodology (RSM). International Food Research Journal 22(3): 1117-1123.

Roslan, J., Mustapa Kamal, S.M., Md. Yunos, K.F. & Abdullah, N. 2014. Optimization of enzymatic hydrolysis of Tilapia muscle (Oreochromis niloticus) using response surface methodology (RSM). Sains Malaysiana 43(11): 1715-1723.

Sathivel, S., Bechtel, P., Babbitt, J., Smiley, S., Crapro, C. & Reppond, K. 2003. Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science 68: 2196-2200.

Schagger, H. & von Jagow, G. 1987. Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166: 368-379.

See, S.F., Hoo, L.L. & Babji, A.S. 2011. Optimization of enzymatic hydrolysis of salmon (Salmo salar) skin by alcalase. International Food Research Journal 18: 1359-1365.

Shamloo, M., Bakar, J., Mat Hashim, D. & Khatib, A. 2012. Biochemical properties of red tilapia (Oreochromis niloticus) protein hydrolysates. International Food Research Journal 19: 183-188.

Shahidi, F., Han, X.Q. & Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from chapelin (Mallotus villosus). Food Chemistry 53: 285-293.

Souissi, N., Bougatef, A., Triki-Ellouz, Y. & Nasri, M. 2007. Biochemical and functional properties of Sardinelle (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology 45: 187-194.

Statistical Analysis System. 1989. Institute, Inc., Cary, NC, USA.

Theodore, A.E. & Kristinsson, H.G. 2007. Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate. Journal of the Science of Food and Agriculture 87: 2353-2357.

Thiansilakul, Y., Benjakul, S. & Shahidi, F. 2007. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry 103: 1385-1394.

Turgeon, S.L., Gauthier, S.F. & Paquin, P. 1991. Interfacial and emulsifying properties of whey peptide fractions obtained with a two-step ultrafiltration process. Journal of Agricultural and Food Chemistry 39(4): 673-676.

Venugopal, V., Chawla, S.P. & Nair, P.M. 1996. Spray-dried protein powder from threadfin beam: Preparation, properties and comparison with FPC type B. Journal of Muscle Foods 7: 55-58.

Wasswa, J., Tang, J. & Gu, X. 2008. Functional properties of grass carp (Ctenopharyngodonidella), Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) skin hydrolysates. International Journal of Food Properties 11: 339-350.

Wasswa, J., Tang, J., Gu, X. & Yuan, X. 2007. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry 104: 1698-1704.

Yang, J.I., Liang, W.S., Chow, C.J. & Siebert, K.J. 2009. Process for the production of tilapia retorted skin gelatin hydrolysates with optimized antioxidative properties. Process Biochemistry 44: 1152-1157.

 

*Corresponding author; email: smazlina@upm.edu.my

 

 

 

previous