Sains Malaysiana 47(2)(2018): 309-318
http://dx.doi.org/10.17576/jsm-2018-4702–13
A Comparative Study between Tilapia
(Oreochromis niloticus)
By-product and Tilapia Protein Hydrolysate on Angiotensin I-converting
Enzyme (ACE) Inhibition Activities and Functional Properties
(Kajian Perbandingan antara Hidrolisat Protein Bahan Sampingan Tilapia
dan Otot Tilapia (Oreochromis niloticus)
terhadap Perencatan Enzim Pengubah Angiotensin (ACE) dan Sifat
Kefungsian)
JUMARDI ROSLAN1, SITI MAZLINA MUSTAPA KAMAL2*, KHAIRUL FAEZAH MD.
YUNOS2 & NORHAFIZAH ABDULLAH3
1Faculty of Food Science and Nutrition, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota
Kinabalu, Sabah Negeri di Bawah Bayu, Malaysia
2Department of Process and Food Engineering, Faculty
of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of Chemical and Environmental Engineering,
Faculty of Engineering
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 6 December 2016/Accepted: 17 July 2017
ABSTRACT
Tilapia
is a popular freshwater fish and among the important cultured fish grown
worldwide. In this study, fish protein hydrolysate was
produced from tilapia (Oreochromis niloticus) by-product (TB) and tilapia muscle (TM)
through enzymatic hydrolysis using alcalase. The TB and TM protein hydrolysates
were evaluated for its characteristics in terms of angiotensin I-converting
enzyme (ACE) inhibition activity, peptide size distribution, and functional
properties. Hydrolysis for 1 h for TB and
TM successfully produced low molecular weight peptides (<14.2kDa) with the
highest ACE inhibitory activities. The findings also demonstrated that both
samples have high nitrogen solubility (>80% at pH2-9) and good emulsifying,
water and oil holding capacities. The study indicated that tilapia protein
hydrolysates have the potential to be used as functional food products.
Keywords: Aangiotensin
I-converting enzyme (ACE) inhibition activity; functional properties; Tilapia
by-product protein hydrolysate; tilapia
muscle protein hydrolysate
ABSTRAK
Tilapia
(Oreochromis niloticus) merupakan ikan air tawar terkenal dan
antara ikan terpenting yang diternak di seluruh dunia. Dalam kajian ini,
hidrolisat protein ikan telah dihasilkan daripada bahan sampingan tilapia (TB)
dan otot tilapia (TM) melalui hidrolisis berenzim menggunakan alkalase. Hidrolisat protein TB dan TM dinilai ciri-cirinya daripada segi
aktiviti perencatan enzim pengubah angiotensin (ACE), taburan saiz peptida dan
sifat kefungsian. Hidrolisis selama 1 jam berjaya menghasilkan peptida
dengan berat molekul rendah (<14.2kDa) dengan aktiviti perencatan ACE yang
tertinggi. Keputusan penemuan juga menunjukkan bahawa
kedua-dua hidrolisat protein mempunyai kelarutan nitrogen yang tinggi (>80%
pada pH2-9), dan kapasiti mengemulsi, memegang air dan memegang minyak yang
baik. Kajian ini menunjukkan bahawa hidrolisat protein
tilapia mempunyai potensi untuk digunakan sebagai produk makanan berfungsi.
Kata kunci: Hidrolisat protein bahan sampingan
tilapia; hidrolisat protein otot tilapia; perencatan aktiviti enzim pengubah angiotensin (ACE); sifat kefungsian
REFERENCES
Adler-Nissen, J. 1986. Enzymatic Hydrolysis of Food Proteins;
Oxford, UK, Elsevier Applied Science Publishers.
Amiza, M.A., Ow, Y.W. &
Faazaz, A.L. 2013. Physicochemical
properties of silver catfish (Pangasius sp.) frame hydrolysate. International
Food Research Journal 20(3):
1255-1262.
Amiza, M.A., Nurul Ashikin, S. & Faazaz,
A.L. 2011. Optimization of enzymatic protein hydrolysis from
silver catfish (Pangasius sp.) frame. International Food Research Journal 18: 775-781.
Aspmo, S.I., Horn, S.J. & Eijsink, V.G.H.
2005. Enzymatic
hydrolysis of atlantic cod (Gadus
morhua L.) viscera. Process
Biochemistry 40: 1957-1966.
Balti, R., Bougatef, A., Ali,
N.E.H., Zekri, D., Barkia, A. & Nasri, M. 2010. Influence of degree of hydrolysis on functional properties and
angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates
from cuttlefish (Sepia
officinalis) by-products. Journal of the Science of Food and Agriculture 90(12): 2006-2014.
Benjakul,
S. & Morrissey, M.T. 1997. Protein Hydrolysates from
pacific whiting solid wastes. Journal
of Agricultural and Food Chemistry 45: 3423-3430.
Bougatef, A., Nedjar-Arroume, N.,
Ravallec-Ple, R., Leroy, Y., Guillochon, D. & Barkia, A. 2008. Angiotensin I-converting enzyme (ACE)
inhibitory activities of sardinelle (Sardinella
aurita) by-products protein hydrolysates obtained by treatment with
microbial and visceral fish serine proteases. Food Chemistry 111: 350-356.
Chalamaiah,
M., Kumar, B.D., Hemalatha, R. & Jyothirmayi, T. 2012. Fish protein hydrolysates: Proximate
composition, amino acid composition, antioxidant activities and applications: A
review. Food Chemistry 135: 3020-3038.
Church, F.C., Swaisgood, H.E., Porter, D.H.
& Catignani, G.L. 1983. Spectrophotometric assay
using O-phthaldialdehyde for
determination of proteolysis in milk and isolated milk proteins. Journal
of Dairy Science 66: 1219-1227.
Damodaran, S. 2008. Amino acids, peptides, and proteins. In Food Chemistry. 4th ed., edited by Damodaran, S.,
Parkin, K.L. & Fennema,
O.R. New York: CRC
Press, Taylor & Francis Group. pp.
217-329.
Dekkers, E., Raghavan, S., Kristinsson, H.G.
& Marshall, M.R. 2011. Oxidative stability of mahi mahi red muscle
dipped in tilapia protein hydrolysates. Food Chemistry 124: 640-645.
Diniz, F.M. &
Martin, A.M. 1997. Effects of the extent of
enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensmittel-Wissenschaft und-Technologie 30: 266-272.
Fahmi, A., Morimura, S., Guo, H.C.,
Shigematsu, T., Kida, K. & Uemura, Y. 2004. Production of angiotensin I-converting enzyme
inhibitory peptides from sea bream scales. Process
Biochemistry 39: 1195-1200.
Foh, M.B.K., Kamara, M.T., Amadou, I., Foh,
B.M. & Wenshui, X. 2011. Chemical
and physicochemical properties of tilapia (Oreochromis
niloticus) fish protein hydrolysate and concentrate. International Journal of Biological Chemistry 5: 21-36.
Gbogouri, G.A., Linder, M., Fanni, J. &
Parmentier, M. 2004. Influence
of hydrolysis degree on the functional properties of salmon byproduct
hydrolysates. Journal of Food Science 69: 615-622.
Guerard, F., Dufosse, L., De La Broise, D. & Binet, A. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares)
wastes using Alcalase. Journal of
Molecular Catalysis B: Enzymatic 11: 1051-1059.
Je, J.Y., Park, P.J., Kwon, J.Y. & Kim,
S.K. 2004. A novel angiotensin
I-converting enzyme inhibitory peptide from alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry 52: 7842-7845.
Jimsheena, V.K. & Gowda, R. 2009. Colorimetric. High-throughput
assay for screening angiotensin I-converting enzyme inhibitors. Analytical Chemistry 81: 9388-9394.
Jung, W.K., Mendis, E., Je, J.Y., Park, P.J.,
Son, B.W., Kim, H.C., Choi, Y.K. & Kim, S.K. 2006. Angiotensin I-converting enzyme inhibitory
peptide from yellowfin sole (Limanda aspera) frame protein and its
antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 94: 26-32.
Kim,
S.K. & Mendis, E. 2006. Bioactive
compounds from marine processing byproducts. Food Research International 39: 383-393.
Kim, S.K., Byun, H.G., Park, P.J. &
Shahidi, F. 2001. Angiotensin
I-converting enzyme inhibitory peptides purified from bovine skin gelatin
hydrolysate. Journal of Agricultural and
Food Chemistry 49: 2992-2997.
Klompong,
V., Benjakul, S., Kantachote, D. & Shahidi, F. 2007. Antioxidative activity and
functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by
the degree of hydrolysis and enzyme type. Food Chemistry 102: 1317-1327.
Kristinsson, H.G. & Rasco, B.A. 2000.
Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various
alkaline proteases. Journal of
Agricultural and Food Chemistry 48: 657-666.
Lalasidis, G., Bostrom, S. & Sjoberg,
L.B. 1978. Low
molecular weight enzymatic fish protein hydrolysates: Chemical composition and
nutritive value. Journal of Agricultural
and Food Chemistry 26: 751-756.
Lee, S.H., Qian, Z.J. & Kim, S.K. 2010. A novel angiotensin I converting enzyme
inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive
effect in spontaneously hypertensive rats. Food Chemistry 118: 96-102.
Liaset, B., Lied, E. &
Espe, M. 2000. Enzymatic hydrolysis
of by-products from the fish-filleting industry: Chemical characterisation and
nutritional evaluation. Journal of the Science of Food and Agriculture 80: 581-589.
Ngo, D.H., Qian, Z.J., Ryu, B.M., Park, J.W.
& Kim, S.K. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in
free radical-mediated oxidative systems. Journal
of Functional Foods 2: 107-117.
Nielsen, P.M., Petersen, D. & Dambmann,
C. 2001. Improved
method for determining food protein degree of hydrolysis. Journal of
Food Science 66: 642-646.
Ondetti, M.A. 1977. Design of specific inhibitors of
angiotensin-converting enzyme: New class of orally active antihypertensive
agents. Science 196: 441-444.
Quaglia, G.B. & Orban, E. 1990. Influence of enzymatic hydrolysis on
structure and emulsifying properties of sardine (Sardina pilchardus)
protein hydrolysates. Journal of Food Science 55: 1571-1573.
Raghavan, S. & Kristinsson, H.G. 2009. ACE-inhibitory
activity of tilapia protein hydrolysates. Food Chemistry 117: 582-588.
Roslan, J., Mustapa Kamal, S.M., Md. Yunos,
K.F. & Abdullah, N. 2015. Optimization of enzymatic hydrolysis of Tilapia (Oreochromis
niloticus) by-product using response surface methodology (RSM). International Food Research Journal 22(3): 1117-1123.
Roslan, J., Mustapa Kamal, S.M., Md. Yunos,
K.F. & Abdullah, N. 2014.
Optimization of enzymatic hydrolysis of Tilapia muscle (Oreochromis niloticus) using response surface
methodology (RSM). Sains
Malaysiana 43(11): 1715-1723.
Sathivel,
S., Bechtel, P., Babbitt, J., Smiley, S., Crapro, C. & Reppond, K. 2003. Biochemical and
functional properties of herring (Clupea
harengus) byproduct hydrolysates. Journal of Food Science 68: 2196-2200.
Schagger, H. & von Jagow, G. 1987. Tricine sodium dodecyl
sulfate-polyacrylamide gel electrophoresis for the separation of proteins in
the range from 1 to 100 kDa. Analytical
Biochemistry 166: 368-379.
See, S.F., Hoo, L.L. &
Babji, A.S. 2011. Optimization of enzymatic hydrolysis of salmon (Salmo
salar) skin by alcalase. International Food Research Journal 18:
1359-1365.
Shamloo, M., Bakar, J., Mat Hashim, D. &
Khatib, A. 2012. Biochemical properties of red tilapia (Oreochromis
niloticus) protein hydrolysates. International Food Research Journal 19: 183-188.
Shahidi, F., Han,
X.Q. & Synowiecki, J. 1995. Production and characteristics of protein
hydrolysates from chapelin (Mallotus
villosus). Food
Chemistry 53: 285-293.
Souissi,
N., Bougatef, A., Triki-Ellouz, Y. & Nasri, M. 2007. Biochemical and functional
properties of Sardinelle (Sardinella
aurita) by-product hydrolysates. Food
Technology and Biotechnology 45: 187-194.
Statistical Analysis System. 1989.
Institute, Inc., Cary, NC, USA.
Theodore, A.E. & Kristinsson, H.G. 2007.
Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared
from alkaline-aided channel catfish protein isolate. Journal of the
Science of Food and Agriculture 87: 2353-2357.
Thiansilakul,
Y., Benjakul, S. & Shahidi, F. 2007. Compositions, functional properties and antioxidative activity of
protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry 103: 1385-1394.
Turgeon, S.L., Gauthier,
S.F. & Paquin, P. 1991. Interfacial and emulsifying properties
of whey peptide fractions obtained with a two-step ultrafiltration
process. Journal of Agricultural and Food Chemistry
39(4): 673-676.
Venugopal,
V., Chawla, S.P. & Nair, P.M. 1996. Spray-dried protein powder from threadfin beam:
Preparation, properties and comparison with FPC type B. Journal of Muscle Foods 7: 55-58.
Wasswa, J., Tang, J. & Gu, X. 2008. Functional properties of grass carp (Ctenopharyngodonidella), Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) skin hydrolysates. International Journal of Food Properties 11: 339-350.
Wasswa, J., Tang, J., Gu, X. & Yuan, X.
2007. Influence of the extent of
enzymatic hydrolysis on the functional properties of protein hydrolysate from
grass carp (Ctenopharyngodon idella) skin. Food Chemistry 104: 1698-1704.
Yang,
J.I., Liang, W.S., Chow, C.J. & Siebert, K.J.
2009. Process for the production of
tilapia retorted skin gelatin hydrolysates with optimized antioxidative
properties. Process Biochemistry 44:
1152-1157.
*Corresponding author; email: smazlina@upm.edu.my
|