Sains Malaysiana 47(2)(2018): 367-376

http://dx.doi.org/10.17576/jsm-2018-4702-19

 

The Effect of Kenaf Filler Reinforcement on the Mechanical and Physical Properties of Injection Moulded Polypropylene Composites

(Kesan Penguatan Pengisi Kenaf ke atas Sifat Mekanik dan Fizikal Pengacuan Suntikan Komposit Polipropilena)

 

Mohd Khairul Fadzly Md Radzi1*, Norhamidi Muhamad1, Majid Niaz Akhtar2, Zakaria Razak1 & Farhana Mohd Foudzi1

 

1Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Physics, COMSATS Institute of Information Technology, 54000 Lahore, Pakistan

 

Received: 8 June 2017/Accepted: 18 August 2017

 

ABSTRACT

Natural fibres potentially offer better reinforcement to improve the mechanical and physical properties of polymer composites. However, these natural materials at this stage are not fully explored yet due to the fibres themselves have limited heat resistance and are quite sensitive to moisture. This limitation will weaken the adhesion when interacting with thermoplastic matrices during the processing of composites. Therefore, the main purpose of this study is to investigate inherent strength characteristics among kenaf (core and bast) fillers as a reinforcement in polypropylene composites at various geometries and loadings via the injection moulding process. The composite materials consisted of kenaf with the geometric core filler of the 20 mesh (992 µm), 40 mesh (460 µm) and bast filler (166.9 µm) were mixed with polypropylene based on the filler loadings of 10 up to 40 wt. %. The results showed that bast filled composites had the highest tensile strength of 19.52 MPa at 30 wt. %, compared to core filled composites. Instead, 20 mesh core filled composites were obtained had the highest flexural strength which values were 25 MPa and 29 MPa at 20 wt. % and 30 wt. %, respectively. While 40 mesh core filled composites had the highest values of 25.35 MPa at 40 wt. % of filler loading compared to bast filled composites. SEM micrograph images showed the good interfacial bonding of core filler which surrounded by PP leading to diffusion and permeation of bonding. In conclusion, the use of kenaf (core and bast) fillers as a reinforcement in composite materials is reasonable to maximise the use of fibre from natural sources.

Keywords: Injection moulding; kenaf filler; mechanical properties; polypropylene; SEM micrograph images

ABSTRAK

Serabut semula jadi menawarkan kekuatan penguat yang lebih baik bagi meningkatkan sifat mekanik dan fizikal komposit polimer. Walau bagaimanapun, bahan semula jadi ini masih belum diterokai sepenuhnya kerana sifat serabut itu sendiri yang mempunyai rintangan haba yang terhad dan sensitif terhadap lembapan. Keterbatasan ini akan melemahkan rekatan apabila digandingkan bersama matrik termoplastik semasa pemprosesan komposit. Maka kajian ini bertujuan untuk mengkaji kekuatan yang wujud antara pengisi (teras dan bast) kenaf sebagai penguat dalam komposit polipropilena dengan pelbagai geometri dan pembebanan melalui proses pengacuanan suntikan. Bahan komposit yang terdiri daripada kenaf dengan geometri pengisi teras 20 mesh (992 µm), teras 40 mesh (460 µm) dan pengisi bast (166.9 µm) yang dicampur dengan polipropilena berdasarkan pengisi sebanyak 10 hingga 40 % bt. Keputusan menunjukkan komposit berpengisi bast mempunyai nilai kekuatan tegangan yang tertinggi sebanyak 19.52 MPa pada 30 % bt., berbanding komposit berpengisi teras. Sebaliknya, komposit berpengisi teras 20 mesh pula didapati mempunyai kekuatan lenturan yang tertinggi sebanyak 25 MPa dan 29 MPa masing-masing pada 20 dan 30 % bt. Manakala komposit berpengisi 40 mesh mempunyai kekuatan lenturan bernilai 25.35 MPa pada beban 40 % bt., berbanding komposit berpengisi bast. Keputusan mikrograf SEM menunjukkan ikatan antara muka yang terbaik terbentuk oleh pengisi teras kenaf yang dikelilingi sepenuhnya dengan PP, dengan ikatan terbentuk melalui penyebaran dan penyerapan. Kesimpulannya, penggunaan pengisi (teras dan bast) kenaf sebagai bahan penguat dalam komposit adalah munasabah dalam usaha untuk memaksimumkan sepenuhnya penggunaan gentian daripada sumber semula jadi.

Kata kunci: Kekuatan mekanik; mikrografi SEM; pengacuanan suntikan; pengisi kenaf; polipropilena

 

REFERENCES

Abdul Khalil, H.P.S., Ireana Yusra A.F., Bhat, A.H. & Jawaid, M. 2010. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products 31(1): 113-121.

Aisyah, H.A., Paridah, M.T., Sahri, M.H., Anwar, U.M.K. & Astimar, A.A. 2013. Properties of medium density fibreboard (MDF) from kenaf (Hibiscus cannabinus L.) core as function of refining conditions. Composites Part B: Engineering 44(1): 592-596.

Akil, H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S.Z., Ishak, A.M. & Abu Bakar, A. 2011. Kenaf fiber reinforced composites: A review. Materials & Design 32(8-9): 4107-4121.

Anuar, H., Zuraida, A., Kovacs, J.G. & Tabi, T. 2012. Improvement of mechanical properties of injection-molded polylactic acid-kenaf fiber biocomposite. Journal of Thermoplastic Composite Materials 25(2): 153-164.

Balasuriya, P.W., Ye, L. & Mai, Y.W. 2001. Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Composites Part A: Applied Science and Manufacturing 32(5): 619-629.

Bismarck, A., AranberriAskargorta, I., Springer, J., Thomas, L., Bernhard, W., Artemis, S., Ilja, S. & HansHeinrich, L. 2002. Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polymer Composites 23(5): 872-894.

Clemons, C. & Anand, R.S. 2007. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: Effects of temperature and composition. Journal of Reinforced Plastics and Composites 26(15): 1587-1602.

Dehbari, N., Moazeni, N. & Rahman, W.A. 2014. Effects of kenaf core on properties of poly( lactic acid) bio- composite.  Polymer Composites 35(6): 1220-1227.

Dzuhri, S., Yuhana, N.Y. & Khairulazfar, M. 2015. Thermal stability and decomposition study of epoxy/clay nanocomposites. Sains Malaysiana 44(3): 441-448.

El-Shekeil, Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2011. Development of a new kenaf bast fiber-reinforced thermoplastic polyurethane composite. Bioresources 6(4): 4662-4672.

El-Shekeil, Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2012. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design 40: 299-303.

Fu, S.Y., Feng, X.Q., Lauke, B. & Mai, Y.M. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 39(6): 933-961.

Habibi, Y., El-Zawawy, W.K., Ibrahim, M.M. & Dufresne, A. 2008. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology 68(7): 1877-1885.

Hashim, S.N.A.S., Zakaria, S., Chia, C.H., Pua, F.L. & Jaafar, S.N.S. 2016. Chemical and thermal properties of purified kenaf core and oil palm empty fruit bunch lignin. Sains Malaysiana 45(11): 1649-1653.

Ishak, M.R., Zulkiflle, L., Sapuan, S.M., Edeerozey, A.M.M. & Othman, I.S. 2010. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. IOP Conference Series: Materials Science and Engineering 11(1).

Islam, M.R., Beg, M.D.H. & Gupta, A. 2012. Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials 27(7): 909-932.

Ismail, A., Hassan, A., Bakar, A.A. & Jawaid, M. 2013. Flame retardancy and mechanical properties of kenaf filled polypropylene (pp) containing ammonium polyphosphate (APP). Sains Malaysiana 42(4): 429-434.

Ismail, H., Abdullah, A.H. & Bakar, A.A. 2010. Kenaf core reinforced high-density polyethylene/soya powder composites: The effects of filler loading and compatibilizer. Journal of Reinforced Plastics and Composites 29(16): 2489-2497.

Jeyanthi, S., Purushothaman, M. & Rani, J.J. 2011. Development of ecofriendly thermoplastics for automotive components. International Conference on Green Technology and Environmental Conservation, (GTEC 2011).

Khalil, H.P.S.A., Tehrani, M.A., Davoudpour, Y., Bhat, A.H.,  Jawaid, M. & Hassan, A. 2013. Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites 32(5): 330-356.

Khalina, A., Ali, A., Jalaluddin, H., Hasniza, M.Z., Haniffah, W.H.W.M., Yusri, M.Y. & Shuriati. M.G. 2011. Feasibility study of processing natural fiber reinforced plastic composite by injection molding. Materials Testing 53(4): 229-232.

Koronis, G., Silva, A. & Fontul, M. 2013. Green composites: A review of adequate materials for automotive applications. Composites Part B-Engineering 49: 93-93.

Ku, H., Wang, H., Pattarachaiyakoop, N. & Trada, M. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B-Engineering 42(4): 856-873.

Kwon, H.J., Sunthornvarabhas, J., Park, J.W., Lee, J.H., Kim, H.J., Piyachomkwan, K., Sriroth, K. & Cho, D. 2014. Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering 56: 232-237.

Othman, A. & Ismail, E.E. 2007. Quasi-static energy absorption performance of conical coir fibre reinforced polyester composites. Jurnal Kejuruteraan 19: 127-136.

Paridah, M.T., Hafizah, A.W.N.,  Zaidon, A., Azmi, I., Nor, M.Y.M. & Yuziah, M.Y.N. 2009. Bonding properties and performance of multi-layered kenaf board. Journal of Tropical Forest Science 21(2) :113-122.

Rahman, S.K. & Halim, Z. 2012. Thermal analysis of kenaf sandwich core panel. Advanced Materials Research 576: 488-491.

Reddy, N. & Yang, Y. 2005. Biofibers from agricultural byproducts for industrial applications.  TRENDS in Biotechnology 23(1): 22-27.

Rowell, R.M., Sanadi, A.R., Caulfield, D.F. & Jacobson, R.E. 1997. Utilization of natural fibers in plastic composites: Problems and opportunities. Lignocellulosic-Plastics Composites: pp. 23-51.

Rozman, H.D., Musa, L. Azniwati, A.A. & Rozyanty, A.R. 2011. Tensile properties of kenaf/unsaturated polyester composites filled with a montmorillonite filler. Journal of Applied Polymer Science 119(5): 2549-2553.

Saad, M.J. & Kamal, I. 2012. Mechanical and physical properties of low density kenaf core particleboards bonded with different resins. Journal of Science and Technology 4(1).

Sarifuddin, N., Ismail, H. & Ahmad, Z. 2013. The effect of kenaf core fibre loading on properties of low density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Journal of Physical Science 24(2): 97-115.

Shibata, S., Cao, Y. & Fukumoto, I. 2006. Study of the flexural modulus of natural fiber/polypropylene composites by injection molding. Journal of Applied Polymer Science 100(2): 911-917.

Yang, Y.Q., Murakami, M. & Hamada, H. 2012. Molding method, thermal and mechanical properties of jute/pla injection molding. Journal of Polymers and the Environment 20(4): 1124-1133.

Yusoff, M., Zuhri, M., Salit, M.S., Ismail, N. & Wirawan, R. 2010. Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malaysiana 39(1): 87-92.

 

 

*Corresponding author; email: mkfadzly88@yahoo.com

 

 

 

 

previous