Sains Malaysiana 47(2)(2018): 387-391

http://dx.doi.org/10.17576/jsm-2018-4702-21

 

Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ as a Potential Cathode for Proton-Conducting Solid Oxide Fuel Cell

(Penilaian La0.6Sr0.4Co0.2Fe0.8O3-δ sebagai Potensi Katod untuk Sel Fuel Oksida Pepejal Pengkonduksi Proton)

 

Ismariza Ismail*, Nafisah Osman & Abdul Mutalib Md Jani

 

Faculty of Applied Science, Universiti Teknologi MARA, 02600 Arau, Perlis Indera Kayangan,

Malaysia

 

Received: 31 August 2016/Accepted: 18 January 2017

 

 

ABSTRACT

The application of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as a potential cathode working on a BaCe0.54Zr0.36Y0.1O2.95 (BCZY) electrolyte for proton conducting solid oxide fuel cell was investigated. LSCF nanoceramic powders were synthesized by an activated carbon-assisted sol-gel process using metal nitrate-based chemicals. The LSCF powder was transformed to a slurry and spin-coated onto both surfaces of BCZY pellet to form a symmetrical cell with the configuration of LSCF|BCZY|LSCF. The symmetrical cell was subsequently sintered at 950oC for 2 h to allow a good contact formation between electrode/electrolyte layers. The phase structural verification of the calcined powders was investigated by X-Ray diffractometer (XRD). Field-emission scanning electron microscopy (FESEM) was employed to examine the morphology of the sintered cell. The electrochemical behaviour of the symmetrical cell was studied by an electrochemical impedance spectroscopy. The formation of a single perovskite LSCF phase with a crystallite size of 20 nm was obtained at 700oC as corroborated by XRD analysis. The FESEM images showed a good contact between LSCF cathode and BCZY electrolyte at electrode/electrolyte interfacial layer. The ASR obtained for LSCF symmetrical cell measured at 700oC with and without Pt current collector is 0.87 and 31.25 Ωcm2, respectively.

Keywords: Cathode material; morphology; proton-conducting solid oxide fuel cell

ABSTRAK

Kajian penggunaan La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) sebagai potensi katod ke atas elektrolit BaCe0.54Zr0.36Y0.1O2.95 (BCZY) untuk sel fuel oksida pepejal pengkonduksi proton telah dijalankan dalam penyelidikan ini. Serbuk nano seramik LSCF disintesis melalui kaedah sol-gel menggunakan bahan kimia berasaskan garam nitrat dibantu dengan serbuk karbon teraktif sebagai agen penyerakan partikel. Serbuk LSCF yang terhasil dijadikan sebagai dakwat katod dan disalutkan di atas permukaan pelet elektrolit dengan menggunakan teknik 'spin-coat' untuk menghasilkan sel simetri dengan konfigurasi LSCF|BCZY|LSCF. Sel simetri tersebut seterusnya disinter pada suhu 950oC untuk menghasilkan sentuhan yang baik di lapisan antaramuka elektrod/elektrolit. Pengesahan struktur fasa serbuk yang dikalsinkan telah dikaji dengan menggunakan difraktometer sinar-X (XRD). Mikroskop imbasan elektron (FESEM) digunakan bagi mengkaji morfologi sel simetri yang telah disinter. Kajian sifat elektrokimia sel simetri dijalankan dengan menggunakan spektroskopi impedans. Analisis XRD menunjukkan bahawa pembentukan fasa perovskit tunggal LSCF dengan saiz kristalit 20 nm telah diperoleh pada suhu 700oC. Imej FESEM mempamerkan sentuhan yang baik di antara lapisan katod LSCF dengan elektrolit BCZY di bahagian antaramuka elektrod/elektrolit. Rintangan luas permukaan yang didapati hasil pengukuran sel simetri LSCF pada suhu 700oC dengan dan tanpa kehadiran Pt sebagai pengumpul arus masing-masing adalah 0.87 dan 31.25 Ω cm2.

Kata kunci: Bahan katod; morfologi; sel fuel oksida pepejal pengkonduksi proton

 

References

Abdullah, N.A., Hasan, S. & Osman, N. 2012. Role of CA-EDTA on the synthesizing process of        cerate-zirconate ceramics electrolyte. Journal of Chemistry 2012: Article ID. 908340.

Baharuddin, N.A., Rahman, H.A., Muchtar, A., Sulong, A.B. & Abdullah, H., 2014. Kesan masa pengendapan dan saiz elektrod lawan dalam penghasilan katod komposit LSCF-SDC karbonat untuk SOFC. Sains Malaysiana 43(4): 595-601.

Baqué, L., Caneiro, A., Moreno, M.S. & Serquis, A. 2008. High performance nanostructured IT-         SOFC cathodes prepared by novel chemical method. Electrochemistry Communications            10(12): 1905-1908.

Baumann, F.S., Fleig, J., Habermeier, H.U. & Maier, J. 2006. Impedance spectroscopic study on         well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ionics 177(11-12): 1071-1081.

Chanquía, C.M., Mogni, L., Troiani, H.E. & Caneiro, A. 2014. Highly active La0.4Sr0.6Co0.8Fe0.2O3−δ nanocatalyst for oxygen reduction in intermediate temperature-solid oxide fuel cells. Journal of Power Sources 270: 457-467.

Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F.,  Grenier, J.C. & Marrony, M. 2010. Perovskite       and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells.         Electrochimica Acta 55(20): 5847-5853.

Galasso, F.S. 1969. Structure, Properties and Preparation of Perovskite-Type Compounds. Oxford: Pergamon Press. p. 143.

Ismail, I., Osman, N. & Md Jani, A.M. 2016. Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: The role of dispersing agent. Journal of Sol-Gel Science and Technology 80(2): 259-266.

Jiang, S.P. 2002. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics 146(1-2): 1-22.

Kim, J.H., Park, Y.M. & Kim, H.K. 2011. Nano-structured cathodes based on La0.6Sr0.4Co0.2Fe0.8O3−δ for solid oxide fuel cells. Journal of Power Sources 196(7):          3544-3547. Oda, H., Yoneda, T., Sakai, T., Okuyama, Y. & Matsumoto, H. 2014. Preparation of nano-structured cathode for protonic ceramic fuel cell by bead-milling method. Solid State Ionics 262: 388-391.

Ricote, S., Bonanos, N., Rørvik, P.M. & Haavik, C. 2012. Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3−δ cathodes deposited on BaCe0.2Zr0.7Y0.1O3−δ by           infiltration and spray pyrolysis. Journal of Power Sources 209: 172-179.

Sun, W., Zhiwen, Z., Yinzhu, J., Zhen, S., Litao, Y. & Wei, L. 2011. Optimization of BaZr0.1Ce0.7Y0.2O3−δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0.7Sr0.3FeO3−δ–Ce0.8Sm0.2O2−δ composite cathode. International           Journal of Hydrogen Energy 36(16): 9956-9966.

Yang, Z., Ding, Z., Xiao, J., Zhang, H., Ma, G. & Zhou, Z. 2012. A novel cobalt-free layered perovskite-type GdBaFeNiO5+δ cathode material for proton-conducting intermediate temperature solid oxide fuel cells. Journal of Power Sources 220: 15-19.

Zhou, W., Shao, Z. & Jin, W. 2006. Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. Journal of Alloys and Compounds 426(1-2): 368-374.

 

*Corresponding author; email: ismariza85@gmail.com

 

 

 

 

previous