Sains Malaysiana 47(2)(2018):
403-408
http://dx.doi.org/10.17576/jsm-2018-4702-23
The Role of Electrolyte Fluidity on The Power Generation
Characteristics of Thermally Driven Electrochemical Cells
(Peranan Kebendaliran Elektrolit pada Ciri-ciri Penjanaan Kuasa
bagi Sel Elektrokimia Terpacu Haba)
Syed
Waqar Hasan1, Suhana Mohd Said1*, Ahmad Shuhaimi Bin Abu
Bakar2, Hasan Abbas Jaffery3 & Mohd. Faizul Mohd. Sabri3
1Department of Electrical Engineering,
University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
2Low Dimensional Materials Research
Centre, Department of Physics, 50603 Kuala Lumpur, Federal
Territory, Malaysia
3Department of Mechanical Engineering,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received:
7 April 2017/Accepted: 8 August 2017
ABSTRACT
Thermally
driven electrochemical cells (thermocells) are able to convert thermal gradient
applied across redox electrolyte into electricity. The performance of the
thermocells heavily depends on the magnitude and integrity of the applied
thermal gradient. Herein, we study the iodide/triiodide (I‾/I3‾) based 1-Ethyl-3-methyl-imidazolium
Ethylsulfate ([EMIM][EtSO4])
solutions in a thermocell. In order to comprehend the role of fluidity of the
electrolyte, we prepared set of solutions by diluting [EMIM][EtSO4]
with 0.002, 0.004, and 0.010 mol of Acetonitrile (ACN). We realized a significant improvement in ionic conductivity (s) and electrochemical Seebeck (Se) of diluted electrolytes as compared to base [EMIM][EtSO4]
owing to the solvent organization. However, the infra-red thermography
indicated faster heat flow in ACN-diluted-[EMIM][EtSO4]
as compared to the base [EMIM][EtSO4]. Therefore, the maximum power
density of base [EMIM][EtSO4] (i.e. 118.5 mW.m-2) is 3 times higher than the ACN-diluted-[EMIM][EtSO4] (i.e. 36.1 mW.m-2) because of the lower thermal conductivity. Hence this
paper illustrates the compromise between the fast mass/flow transfer due to
fluidity (of diluted samples) and the low thermal conductivity (of the pure
[EMIM][EtSO4]).
Keywords:
Electrochemical cells; energy harvesting; ionic liquids; redox couple;
thermoelectrics
ABSTRAK
Sel elektrokimia yang dipacu secara haba (termosel)
dapat menukar kecerunan terma yang digunakan merentasi elektrolit redoks ke
dalam elektrik. Prestasi termosel sangat bergantung pada magnitud dan integriti kecerunan terma yang digunakan. Di sini, kami mengkaji larutan iodide/triiodide (I‾/I3‾) berasaskan 1-Ethyl-3-methyl-imidazolium
Ethylsulfate ([EMIM][EtSO4])
dalam termosel. Bagi memahami peranan ketidakstabilan elektrolit, kami
menyediakan satu set larutan dengan mencairkan [EMIM][EtSO4] dengan
0.002, 0.004, dan 0.010 mol Acetonitrile (ACN). Didapati bahawa peningkatan yang ketara dalam kekonduksian ion (s) dan elektrokimia Seebeck (Se) daripada
elektrolit yang dicairkan berbanding dengan asas [EMIM][EtSO4]
disebabkan oleh organisasi pelarut. Namun, termografi infra-merah menunjukkan
bahawa aliran haba yang lebih cepat di dalam ACN-dicairkan-[EMIM][EtSO4]
berbanding dengan asas [EMIM][EtSO4]. Oleh itu, ketumpatan kuasa
maksimum asas [EMIM][EtSO4] (iaitu 118.5 mW.m-2) adalah 3 kali lebih tinggi daripada ACN-dicairkan-[EMIM][EtSO4] (iaitu 36.1 mW.m-2) akibat daripada kekonduksian terma yang lebih rendah. Dengan ini, kajian ini menggambarkan kompromi antara pemindahan jisim/aliran cepat
disebabkan oleh kecairan (sampel yang dicairkan) dan kekonduksian haba yang
rendah (bagi [EMIM][EtSO4] tulen).
Kata
kunci: Cecair ionik; pasangan redox; penuaian tenaga; sel elektrokimia;
termoelektrik
REFERENCES
Abraham, T.J., MacFarlane, D.R.,
Baughman, R.H., Jin, L., Li, N. & Pringle, J.M. 2013a. Towards ionic liquid-based
thermoelectrochemical cells for the harvesting of thermal energy. Electrochimica
Acta 113: 87-93.
Abraham, T.J., Douglas, R.M. &
Jennifer, M.P. 2013b. High Seebeck coefficient redox ionic liquid electrolytes for
thermal energy harvesting. Energy
& Environmental Science 6(9): 2639-2645.
Abraham, T.J., Douglas, R.M. &
Jennifer, M.P. 2011. Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical
cells. Chemical Communications 47(22): 6260-6262.
Bonetti, M., Nakamae, S., Roger, M. & Guenoun, P.
2011. Huge Seebeck coefficients in nonaqueous electrolytes. The
Journal of Chemical Physics 134(11): 114513.
Dhumal, N.R., Hyung, J.K. & Johannes, K. 2011.
Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium
ethyl sulfate ion pair. The Journal of
Physical Chemistry A 115(15): 3551-3558.
Hasan, S.W., Suhana, M.S., Mohd Faizul, M.S., Ahmad
Shuhaimi, A.B., Nur Awanis, H., Megat Muhammad, I.M.H., Jennifer, M.P. &
Douglas, R.M. 2016. High thermal gradient
in thermo-electrochemical cells by insertion of a poly (vinylidene fluoride) membrane. Scientific
Reportsp. 6.
He, J., Danah, A.M., Douglas, R.
& Jennifer, M.P. 2016. Temperature dependence of the electrode potential of a cobalt-based
redox couple in ionic liquid electrolytes for thermal energy harvesting. Faraday Discussions.
Hu, R., Baratunde, A.C., Nanda, H., Joseph, N.B.,
Sergey, L., Stephanie, S., Gordon, W., Chee, T., Michael, T. & Adrian, G.
2010. Harvesting waste thermal energy using a carbon-nanotube-based
thermo-electrochemical cell. Nano Letters 10(3): 838-846.
Jin, L., George, W.G., Douglas, R.M. & Jennifer, M.P. 2016. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Letters 1(4): 654-658.
Kazim, A.H. & Baratunde, A.C. 2016.
Electrochemical characterization of carbon nanotube and poly (3, 4-ethylenedioxythiophene) - poly
(styrenesulfonate) composite aqueous electrolyte for thermo-electrochemical cells. Journal of the
Electrochemical Society 163(8):
F867-F871.
Kim, T., Jeong, S.L., Geonhui, L.,
Hongsik, Y., Jeyong, Y., Tae, J.K. &
Yong, H.K. 2017. High thermopower of ferri/ferrocyanide redox couple in
organic-water solutions. Nano
Energy 31: 160-167.
Lazar, M.A., Danah, A.M., Douglas, R.M. &
Jennifer, M.P. 2016. Enhanced thermal energy harvesting performance of a cobalt
redox couple in ionic liquid–solvent mixtures. Physical Chemistry Chemical Physics 18(3): 1404-1410.
Mua, Y. & Quickenden, T.I. 1996. Power conversion efficiency, electrode separation, and
overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. Journal of the
Electrochemical Society 143(8):
2558-2564.
Quickenden, T.I. & Mua, Y. 1995. The power
conversion efficiencies of a thermogalvanic cell operated in three different
orientations. Journal of the Electrochemical Society 142(11): 3652-3659.
Salazar, P.F., Sai, T.S., Ali, H.K.,
Jennifer, M.P. & Baratunde, A.C. 2014. Enhanced thermo-electrochemical power using carbon nanotube additives
in ionic liquid redox electrolytes. Journal of Materials Chemistry A 2(48): 20676-20682.
Wu, J., Jeffrey, J.B. & Leigh, A. 2016. Thermoelectrochemistry using conventional and novel gelled
electrolytes in heat-to-current thermocells. Electrochimica Acta 225: 482-492.
Yang, P., Kang, L., Qian, C.,
Xiaobao, M., Yishu, Z., Song, L., Guang, F. & Jun, Z. 2016. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angewandte
Chemie 128(39): 12229-12232.
Zinovyeva, V., Sawako, N., Marco, B.
& Michel, R. 2014. Enhanced
thermoelectric power in ionic liquids. ChemElectroChem 1(2): 426-430.
*Corresponding author; email: smsaid@um.edu.my