Sains Malaysiana 47(2)(2018): 419-426
http://dx.doi.org/10.17576/jsm-2018-4702-25
Load Forecasting using Combination Model
of Multiple Linear Regression with Neural Network for Malaysian City
(Peramalan Beban menggunakan Model Gabungan
bagi Regresi Linear Berganda dengan Rangkaian Neuron untuk Bandaraya
di Malaysia)
Nur Arina Bazilah Kamisan1,
Muhammad Hisyam Lee1*, Suhartono Suhartono2, Abdul Ghapor
Hussin3 & Yong Zulina Zubairi4
1Fakulti Sains, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Jalan
Raya ITS, Keputih, Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
3Universiti
Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
4Universiti
Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan,
Malaysia
Received:
1 May 2016/Accepted: 16 August 2017
Abstract
Forecasting
a multiple seasonal data is differ from a usual seasonal data since it contains
more than one cycle in a data. Multiple linear regression (MLR) models have
been used widely in load forecasting because of its usefulness in the forecast
a linear relationship with other factors but MLR has a disadvantage of having
difficulties in modelling a nonlinear relationship between the variables and
influencing factors. Neural network (NN) model, on the other hand, is a good
model for modelling a nonlinear data. Therefore, in this study, a combination
of MLR and NN models has proposed this combination to overcome the problem. This
hybrid model is then compared with MLR and NN models to see the performance of
the hybrid model. RMSE is used as a performance indicator and a proposed
graphical error plot is introduce to see the error graphically. From the result
obtained this model gives a better forecast compare to the other two models.
Keywords: Error plot; hybrid model; neural
network; regression model; residuals
Abstrak
Peramalan
berganda data bermusim adalah berbeza daripada peramalan data
bermusim biasa kerana ia mengandungi lebih daripada satu kitaran
dalam satu data. Model berganda regresi linear (MLR) telah digunakan
secara meluas dalam ramalan beban kerana kegunaannya dalam meramalkan
hubungan linear dengan faktor lain tetapi MLR mempunyai kelemahan
iaitu mempunyai kesukaran dalam memodelkan hubungan linear antara
pemboleh ubah dan faktor yang mempengaruhi. Model rangkaian neural
(NN) di sisi lain, adalah model yang baik dalam pemodelan data
linear. Oleh itu, dalam kajian ini gabungan MLR dan NN model dicadangkan
gabungan ini untuk mengatasi masalah tersebut. Model hibrid ini
kemudiannya dibandingkan dengan MLR dan NN model untuk melihat
prestasi model hibrid. RMSE digunakan sebagai penunjuk prestasi
dan plot ralat grafik diperkenalkan untuk melihat ralat secara
grafik. Daripada keputusan yang diperoleh model ini memberikan
ramalan yang lebih baik berbanding dengan dua model yang lain.
Kata
kunci: Model hibrid; model regresi; plot ralat; rangkaian neural; sisa
References
Basheer Shukur,
O., Salem Fadhil, N., Hisyam Lee, M. & Hura Ahmad, M. 2014. Electricity
load forecasting using hybrid of multiplicative double seasonal exponential
smoothing model with artificial neural network. Jurnal Teknologi (Sciences and Engineering). 69(2): 65-70.
Bates, J.M.
& Granger, C.W.J. 1969. The combination of forecasts. J. Oper. Res. Soc. 20(4): 451-468.
Bowerman, B.L.,
O'Connell, R.T. & Koehler, A.B. 2005. Forecasting,
Time Series, and Regression: An Applied Approach. 4th ed. Pacific Grove:
Thomson Brooks/Cole.
Chakhchoukh, Y.,
Panciatici, P. & Mili, L. 2011. Electric load forecasting based on
statistical robust methods. IEEE
Transactions on Power Systems 26(3): 982-991.
Chatfield, C. 2005. Time-series forecasting. Significance 2(3): 131-133.
Chatfield, C. 2000. Time-Series
Forecasting. Boca Raton: Chapman & Hall/CRC.
Chatfield,
C. 1978. The Holt-Winters forecasting procedure. Journal of the Royal Statistical Society. Series C (Applied Statistics) 27(3): 264-279.
Dudek, G. 2016.
Pattern-based local linear regression models for short-term load forecasting. Electric Power Systems Research 130:
139-147.
Gould, P.G.,
Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J. & Vahid-Araghi, F.
2008. Forecasting time series with multiple seasonal patterns. European Journal of Operational Research 191(1):
207-222.
Hahn,
H., Meyer-Nieberg, S. & Pickl, S. 2009. Electric load forecasting methods:
Tools for decision making. European
Journal of Operational Research 199(3): 902-907.
Hyndman,
R.J. & Koehler, A.B. 2006. Another look at measures of forecast accuracy. International journal of forecasting. 22(4):
679-688.
Ismail, Z.,
Jamaluddin, F. & Jamaludin, F. 2008. Time series regression model for
forecasting malaysian electricity load demand. Asian Journal of Mathematics & Statistics 1: 139-149.
Jang, J.S.R.
1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on. Systems, Man and
Cybernetics 23(3): 665-685.
Kyriakides, E.
& Polycarpou, M. 2007. Short term electric load forecasting: A tutorial. In Trends in Neural Computation, edited
by Chen, K. & Wang, L. Berlin Heidelberg: Springer. 35: 391-418.
Masters, T.
1993. 19 - Evaluating performance of neural networks. In Practical Neural Network Recipies in C++. edited by Masters, T. San
Francisco: Morgan Kaufmann. pp. 343-360.
Mastorocostas,
P.A., Theocharis, J.B., Kiartzis, S.J. & Bakirtzis, A.G. 2000. A hybrid
fuzzy modeling method for short-term load forecasting. Mathematics and Computers in Simulation 51(3-4): 221-232.
Mohamed, N.
& Ahmad, M.H. 2010. Forecasting Malaysia load using a hybrid model. Paper presented at the STATISTIKA: Forum Teori dan Aplikasi
Statistika.
Mohamed, N., Ahmad, M.H. & Ismail, Z. 2011. Improving
short term load forecasting using double seasonal arima model. World Applied Sciences Journal 15(2):
223-231.
Mohamed,
N., Ahmad, M.H. & Ismail, Z. 2010. Double seasonal ARIMA model for
forecasting load demand. Matematika 26:
217-231.
Park, Y.R.,
Murray, T.J. & Chen, C. 1996. Predicting sun spots using a layered
perceptron neural network. IEEE Trans
Neural Netw. 7(2): 501-505.
Ringwood, J.V.,
Bofelli, D. & Murray, F.T. 2001. Forecasting electricity demand on short,
medium and long time scales using neural networks. Journal of Intelligent & Robotic Systems 31(1): 129-147.
Soares,
L.J. & Medeiros, M.C. 2008. Modeling and forecasting short-term electricity
load: A comparison of methods with an application to Brazilian data. International Journal of Forecasting 24(4):
630-644.
Tang, Z. &
Fishwick, P.A. 1993. Feedforward neural nets as models for time series forecasting. ORSA Journal on Computing 5(4):
374-385.
Taylor, J.W.
2003. Short-term electricity demand forecasting using double seasonal
exponential smoothing. The Journal of the
Operational Research Society 54(8): 799-805.
Xiaojuan, L.,
Enjian, B., Jian'an, F. & Lunhan, L. 2010. Time-variant slide fuzzy
time-series method for short-term load forecasting. Paper presented at the 2010 IEEE International Conference on
Intelligent Computing and Intelligent Systems (ICIS).
Ying, L.C. &
Pan, M.C. 2008. Using adaptive network based fuzzy inference system to forecast
regional electricity loads. Energy
Conversion and Management 49(2): 205-211.
Zhang, G.P.
2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
Zhang,
G.P. & Qi, M. 2005. Neural network forecasting for seasonal and trend time
series. European Journal of Operational
Research 160(2): 501-514.
Zhang, Y., Zhou, Q., Sun, C., Lei, S., Liu, Y. & Song, Y.
2008. RBF neural network and ANFIS-based short-term load forecasting approach
in real-time price environment. IEEE
Transactions on Power Systems 23(3): 853-858.
*Corresponding author; email: mhl@utm.my