Sains Malaysiana 47(3)(2018): 523–530

http://dx.doi.org/10.17576/jsm-2018-4703-12

 

Heavy Metals Leaching Behaviour Assessment of Palm Oil Clinker

(Penilaian Tingkah Laku Larut Lesap Logam Berat Klinker Minyak Sawit)

 

MOHAMMAD RAZAUL KARIM1*, SUMIANI YUSOFF1, HASHIM ABDUL RAZAK1, FAISAL I. CHOWDHURY2 & HOSSAIN ZABED3

 

1Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Center for Ionics, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 26 July 2017/Accepted: 24 October 2017

 

ABSTRACT

 

Technical benefit of incorporation of Palm Oil Clinker (POC) in cement-based applications has been proven in recent studies. The aim of this work was to assess the heavy metal leaching behavior to ensure environmental safety of using POC in cement-based applications. The chemical composition, morphology, total organic carbon (TOC) and mineralogy were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate chemical reagents for complete digestion. HNO3, HF and HClO4 were used for digestion of POC to measure heavy metal content using ICP-MS. The chemical reagents CH3COOH, NH2OH-HCl, H2O2+CH3COONH4 and HF+HNO3+HCl were used for extraction of acid soluble, reducible, oxidizable and residual fractions of heavy metals in POC, respectively. The leaching toxicity of the POC was investigated by the USEPA 1311 TCLP method. The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and Pb with levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and 1.76 mg/kg, respectively, in POC. The leaching value in mg/L of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well below the standard limit of risk. Risk assessment code (RAC) analysis confirms the safe incorporation of POC in cement-based applications.

 

Keywords: Cement-based applications; heavy metal; leaching toxicity; palm oil clinker; risk assessment code

 

ABSTRAK

 

Manfaat teknikal penggabungan Clinker Minyak Sawit (POC) dalam aplikasi berasaskan simen telah terbukti dalam kajian ini. Tujuan kerja ini adalah untuk menilai tingkah laku larut lesap logam berat untuk memastikan keselamatan alam sekitar menggunakan POC dalam aplikasi berasaskan simen. Komposisi kimia, morfologi, jumlah karbon organik (TOC) dan mineralogi ditentukan menggunakan XRF, FESEM, penganalisis TOC dan XRD untuk memilih bahan uji kimia yang sesuai untuk pencernaan yang lengkap. HNO3, HF dan HClO4 digunakan untuk pencernaan POC untuk mengukur kandungan logam berat menggunakan ICP-MS. Bahan uji kimia CH3COOH, NH2OH-HCl, H2O2+ CH3COONH4 dan HF+ HNO3+ HCl digunakan untuk pengekstrakan asid larut, penurunan, pengoksidaan dan sisa pecahan logam berat masing-masing dalam POC. Ketoksikan lesapan POC telah dikaji menggunakan kaedah USEPA 1311 TCLP. Keputusan menunjukkan kehadiran Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba dan Pb dengan tahap 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 dan 1.76 mg /kg, masing-masing dalam POC. Nilai lesapam dalam mg/L As (4.56), Cu (1.05), Be (0.89), Zn (0.51), Ba (0.26), Ni (0.17), V (0.15), Cr (0.001) 0.001) didapati jauh daripada batasan piawaian risiko. Analisis kod penilaian risiko (RAC) mengesahkan keselamatan pematuhan POC dalam aplikasi berasaskan simen

 

Kata kunci: Aplikasi berasaskan simen; ketoksikan larut lesap; klinker minyak sawit; logam berat; penilaian kod risiko

 

REFERENCES

 

Ahmad, H., Hilton, M., Mohd, S. & Mohd Noor, N. 2007. Mechanical properties of palm oil clinker concrete. Engineering Conference on Energy & Environment.

Aini Azura, A., Fauziah, C. & Samsuri, A. 2012. Cadmium and zinc concentrations in soils and oil palm tissues as affected by long-term application of phosphate rock fertilizers. Soil and Sediment Contamination: An International Journal 21(5): 586-603.

Awalludin, M.F., Sulaiman, O., Hashim, R. & Nadhari, W.N.A.W. 2015. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews 50: 1469-1484.

Azamana, F., Juahira, H., Yunusb, K., Azida, A., Kamarudina, M.K.A., Ekhwan, M., Torimana, A.D.M., Amrana, M.A., Hasnama, C.N.C. & Saudia, A.S.M. 2015. Heavy metal in fish: Analysis and human health-a review. Jurnal Teknologi 77(1): 61-69.

Aziz, R.A., Rahim, S.A., Sahid, I. & Idris, W.M.R. 2015. Speciation and availability of heavy metals on serpentinized paddy soil and paddy tissue. Procedia-Social and Behavioral Sciences 195: 1658-1665.

Azrina, A., Khoo, H., Idris, M., Amin, I. & Razman, M.R. 2011. Major inorganic elements in tap water samples in Peninsular Malaysia. Malaysian Journal of Nutrition 17(2): 271-276.

Baharim, N.B., Yusop, Z., Yusoff, I., Wan Muhd Tahir, W.Z., Askari, M., Othman, Z. & Zalnal Abidin, M.R. 2016. The relationship between heavy metals and trophic properties in Sembrong Lake, Johor. Sains Malaysiana 45(1): 43-53.

Commission, E. 2013. Peninsular Malaysia Electricity Supply Industr y Outlook 2013, Malaysia.

Grumiaux, F., Demuynck, S., Pernin, C. & Leprêtre, A. 2015. Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicology and Environmental Safety 113: 183-190.

Haiying, Z., Youcai, Z. & Jingyu, Q. 2010. Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai. Process Safety and Environmental Protection 88(2): 114-124.

Hooper, K., Iskander, M., Sivia, G., Hussein, F., Hsu, J., DeGuzman, M., Odion, Z., Ilejay, Z., Sy, F. & Petreas, M. 1998. Toxicity characteristic leaching procedure fails to extract oxoanion-forming elements that are extracted by municipal solid waste leachates. Environmental Science & Technology 32(23): 3825-3830.

Ibrahim, H.A. & Razak, H.A. 2016. Effect of palm oil clinker incorporation on properties of pervious concrete. Construction and Building Materials 115: 70-77.

Jang, J., Ahn, Y., Souri, H. & Lee, H. 2015. A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials 79: 173-181.

Kanadasan, J. & Abdul Razak, H. 2015. Utilization of palm oil clinker as cement replacement material. Materials 8(12): 8817-8838.

Kanadasan, J. & Razak, H.A. 2014a. Mix design for self-compacting palm oil clinker concrete based on particle packing. Materials & Design 56: 9-19.

Kanadasan, J. & Razak, H.A. 2014b. Fresh Properties of Self-compacting Concrete Incorporating Palm Oil Clinker. New York: Springer. pp. 249-259.

Karim, M.R., Hashim, H., Razak, H.A. & Yusoff, S. 2017. Characterization of palm oil clinker powder for utilization in cement-based applications. Construction and Building Materials 135: 21-29.

Karim, M.R., Hashim, H. & Razak, H.A. 2016a Assessment of pozzolanic activity of palm oil clinker powder. Construction and Building Materials 127: 335-343.

Karim, M.R., Hashim, H. & Razak, H.A. 2016b. Thermal activation effect on palm oil clinker properties and their influence on strength development in cement mortar. Construction and Building Materials 125: 670-678.

Li, X., Gan, C. & Hu, B. 2011. Accessibility to microcredit by Chinese rural households. Journal of Asian Economics 22(3): 235-246.

Lincoln, J.D., Ogunseitan, O.A., Shapiro, A.A. & Saphores, J.D.M. 2007. Leaching assessments of hazardous materials in cellular telephones. Environmental Science & Technology 41(7): 2572-2578.

Mani, U., Prasad, A., Kumar, V.S., Lal, K., Kanojia, R., Chaudhari, B. & Murthy, R. 2007. Effect of fly ash inhalation on biochemical and histomorphological changes in rat liver. Ecotoxicology and Environmental Safety 68(1): 126-133.

Markad, V.L., Gaupale, T.C., Bhargava, S., Kodam, K.M. & Ghole, V.S. 2015. Biomarker responses in the earthworm, Dichogaster curgensis exposed to fly ash polluted soils. Ecotoxicology and Environmental Safety 118: 62-70.

Musson, S.E., Jang, Y.C., Townsend, T.G. & Chung, I.H. 2000. Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure. Environmental Science & Technology 34(20): 4376-4381.

Nayak, A., Raja, R., Rao, K., Shukla, A., Mohanty, S., Shahid, M., Tripathi, R., Panda, B., Bhattacharyya, P. & Kumar, A. 2015. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicology and Environmental Safety 114: 257-262.

Pan, Y., Wu, Z., Zhou, J., Zhao, J. Ruan, X., Liu, J. & Qian, G. 2013. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. Journal of Hazardous Materials 261: 269-276.

Pontes, F.V.M., de O. Mendes, B.A., de Souza, E.M.F., Ferreira, F.N., da Silva, L.I.D., Carneiro, M.C., Monteiro, M.I.C., de Almeida, M.D., Neto, A.A. & Vaitsman, D.S. 2010. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry. Analytica chimica acta 659(1-2): 55-59.

Safiuddin, M., M. Abdus Salam and M. Z. Jumaat (2011). Utilization of palm oil fuel ash in concrete: A review. Journal of Civil Engineering and Management 17(2): 234-247.

Sahibin, A., Razi, I., Zulfahmi, A., Tukimat, L., Barzani, G., Jumaat, H. & Low, H. 2008. Heavy metals uptake by terung pipit (Solanum torvum) in ultrabasic soil at Kuala Pilah, Negeri Sembilan. Sains Malaysiana 37(4): 323-330.

Shaheen, S.M. & Rinklebe, J. 2015. Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering 74: 319-326.

Singh, J. & Kalamdhad, A.S. 2013. Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecological Engineering 52: 59-69.

Singh, J. & Lee, B.K. 2015. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecological Engineering 81: 76-81.

Sun, Y., Xie, Z., Li, J., Xu, J., Chen, Z. & Naidu, R. 2006. Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environmental Geochemistry and Health 28(1-2): 73-78.

Tiwari, M.K., Bajpai, S., Dewangan, U. & Tamrakar, R.K. 2015. Suitability of leaching test methods for fly ash and slag: A review. Journal of Radiation Research and Applied Sciences 8(4): 523-537.

Wang, F.H., Zhang, F., Chen, Y.J., Gao, J. & Zhao, B. 2015. A comparative study on the heavy metal solidification/ stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. Journal of Hazardous Materials 300: 451-458.

Wu, S., Xu, Y., Sun, J., Cao, Z., Zhou, J., Pan, Y. & Qian, G. 2015. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158: 764-769.

Xie, Y. & Zhu, J. 2013. Leaching toxicity and heavy metal bioavailability of medical waste incineration fly ash. Journal of Material Cycles and Waste Management 15(4): 440-448.

Yap, C.K. 2012. Application of factor analysis in geochemical fractions of heavy metals in the surface sediments of the offshore and intertidal areas of Peninsular Malaysia. Sains Malaysiana 41(4): 389-394.

Yunus, K., Mohd Yusuf, N., Shazili, M., Azhar, N., Ong, M.C., Saad, S., Khan Chowdhury, A.J. & Bidai, J. 2011. Heavy metal concentration in the surface sediment of Tanjung Lumpur mangrove forest, Kuantan, Pahang, Malaysia. Sains Malaysiana 40(2): 89-92.

Zhou, Y., Ning, X.A., Liao, X., Lin, M., Liu, J. & Wang, J. 2013. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicology and Environmental Safety 95: 130-136.

 

 

*Corresponding author; email: mrkakanda@yahoo.com

 

 

 

previous