Sains Malaysiana 47(3)(2018):
523–530
http://dx.doi.org/10.17576/jsm-2018-4703-12
Heavy Metals Leaching Behaviour Assessment of Palm Oil Clinker
(Penilaian Tingkah Laku Larut
Lesap Logam Berat Klinker Minyak Sawit)
MOHAMMAD RAZAUL KARIM1*, SUMIANI YUSOFF1, HASHIM ABDUL RAZAK1, FAISAL I. CHOWDHURY2 & HOSSAIN ZABED3
1Department of Civil Engineering, Faculty of
Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Center for Ionics, Department of Physics, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Received:
26 July 2017/Accepted: 24 October 2017
ABSTRACT
Technical
benefit of incorporation of Palm Oil Clinker (POC)
in cement-based applications has been proven in recent studies. The aim of this
work was to assess the heavy metal leaching behavior to ensure environmental
safety of using POC in cement-based applications. The
chemical composition, morphology, total organic carbon (TOC)
and mineralogy were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate
chemical reagents for complete digestion. HNO3, HF and HClO4 were
used for digestion of POC to measure heavy metal content
using ICP-MS. The chemical reagents CH3COOH,
NH2OH-HCl, H2O2+CH3COONH4 and
HF+HNO3+HCl were used for extraction of acid soluble,
reducible, oxidizable and residual fractions of heavy metals in POC,
respectively. The leaching toxicity of the POC was
investigated by the USEPA 1311 TCLP method.
The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and
Pb with levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and
1.76 mg/kg, respectively, in POC. The leaching value in mg/L
of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15),
Cr(0.001) and Se (0.001) is found well below the standard limit of risk. Risk
assessment code (RAC) analysis confirms the safe
incorporation of POC in cement-based applications.
Keywords:
Cement-based applications; heavy metal; leaching toxicity; palm oil clinker;
risk assessment code
ABSTRAK
Manfaat teknikal
penggabungan Clinker Minyak Sawit (POC)
dalam aplikasi berasaskan simen telah terbukti dalam kajian ini.
Tujuan kerja ini adalah untuk menilai tingkah laku larut lesap logam
berat untuk memastikan keselamatan alam sekitar menggunakan POC dalam aplikasi berasaskan
simen. Komposisi kimia, morfologi, jumlah karbon organik (TOC)
dan mineralogi ditentukan menggunakan XRF, FESEM,
penganalisis TOC dan XRD untuk memilih bahan uji kimia
yang sesuai untuk pencernaan yang lengkap. HNO3,
HF
dan HClO4 digunakan
untuk pencernaan POC untuk mengukur kandungan logam berat menggunakan
ICP-MS.
Bahan uji kimia CH3COOH, NH2OH-HCl,
H2O2+ CH3COONH4
dan HF+ HNO3+ HCl digunakan untuk pengekstrakan asid larut, penurunan,
pengoksidaan dan sisa pecahan logam berat masing-masing dalam POC.
Ketoksikan lesapan POC telah dikaji menggunakan kaedah USEPA
1311 TCLP. Keputusan menunjukkan kehadiran
Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba dan Pb dengan tahap 5.13,
11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 dan 1.76 mg
/kg, masing-masing dalam POC. Nilai lesapam dalam mg/L As (4.56), Cu (1.05), Be (0.89),
Zn (0.51), Ba (0.26), Ni (0.17), V (0.15), Cr (0.001) 0.001) didapati
jauh daripada batasan piawaian risiko. Analisis kod penilaian risiko
(RAC)
mengesahkan keselamatan pematuhan POC dalam aplikasi berasaskan
simen
Kata kunci: Aplikasi berasaskan simen; ketoksikan larut lesap;
klinker minyak sawit; logam berat; penilaian kod risiko
REFERENCES
Ahmad, H., Hilton, M., Mohd, S. & Mohd Noor, N. 2007.
Mechanical properties of palm oil clinker concrete. Engineering Conference
on Energy & Environment.
Aini Azura, A., Fauziah, C. & Samsuri, A. 2012. Cadmium and
zinc concentrations in soils and oil palm tissues as affected by long-term
application of phosphate rock fertilizers. Soil and Sediment Contamination:
An International Journal 21(5): 586-603.
Awalludin, M.F., Sulaiman, O., Hashim, R. & Nadhari, W.N.A.W.
2015. An overview of the oil palm industry in Malaysia and its waste
utilization through thermochemical conversion, specifically via liquefaction. Renewable
and Sustainable Energy Reviews 50: 1469-1484.
Azamana, F., Juahira, H., Yunusb, K., Azida, A., Kamarudina,
M.K.A., Ekhwan, M., Torimana, A.D.M., Amrana, M.A., Hasnama, C.N.C. &
Saudia, A.S.M. 2015. Heavy metal in fish: Analysis and human health-a review. Jurnal
Teknologi 77(1): 61-69.
Aziz, R.A., Rahim, S.A., Sahid, I. & Idris, W.M.R. 2015.
Speciation and availability of heavy metals on serpentinized paddy soil and
paddy tissue. Procedia-Social and Behavioral Sciences 195: 1658-1665.
Azrina, A., Khoo, H., Idris, M., Amin, I. & Razman, M.R. 2011.
Major inorganic elements in tap water samples in Peninsular Malaysia. Malaysian
Journal of Nutrition 17(2): 271-276.
Baharim, N.B., Yusop, Z., Yusoff, I., Wan Muhd Tahir, W.Z.,
Askari, M., Othman, Z. & Zalnal Abidin, M.R. 2016. The relationship between
heavy metals and trophic properties in Sembrong Lake, Johor. Sains
Malaysiana 45(1): 43-53.
Commission, E. 2013. Peninsular Malaysia Electricity Supply
Industr y Outlook 2013, Malaysia.
Grumiaux,
F., Demuynck, S., Pernin, C. & Leprêtre, A. 2015. Earthworm populations of
highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicology
and Environmental Safety 113: 183-190.
Haiying,
Z., Youcai, Z. & Jingyu, Q. 2010. Characterization of heavy metals in fly
ash from municipal solid waste incinerators in Shanghai. Process Safety and
Environmental Protection 88(2): 114-124.
Hooper,
K., Iskander, M., Sivia, G., Hussein, F., Hsu, J., DeGuzman, M., Odion, Z.,
Ilejay, Z., Sy, F. & Petreas, M. 1998. Toxicity characteristic leaching
procedure fails to extract oxoanion-forming elements that are extracted by
municipal solid waste leachates. Environmental Science & Technology 32(23):
3825-3830.
Ibrahim,
H.A. & Razak, H.A. 2016. Effect of palm oil clinker incorporation on
properties of pervious concrete. Construction and Building Materials 115:
70-77.
Jang,
J., Ahn, Y., Souri, H. & Lee, H. 2015. A novel eco-friendly porous concrete
fabricated with coal ash and geopolymeric binder: Heavy metal leaching
characteristics and compressive strength. Construction and Building
Materials 79: 173-181.
Kanadasan,
J. & Abdul Razak, H. 2015. Utilization of palm oil clinker as cement
replacement material. Materials 8(12): 8817-8838.
Kanadasan,
J. & Razak, H.A. 2014a. Mix design for self-compacting palm oil clinker
concrete based on particle packing. Materials & Design 56: 9-19.
Kanadasan,
J. & Razak, H.A. 2014b. Fresh Properties of Self-compacting Concrete
Incorporating Palm Oil Clinker. New York: Springer. pp. 249-259.
Karim,
M.R., Hashim, H., Razak, H.A. & Yusoff, S. 2017. Characterization of palm
oil clinker powder for utilization in cement-based applications. Construction
and Building Materials 135: 21-29.
Karim,
M.R., Hashim, H. & Razak, H.A. 2016a Assessment of pozzolanic activity of
palm oil clinker powder. Construction and Building Materials 127:
335-343.
Karim,
M.R., Hashim, H. & Razak, H.A. 2016b. Thermal activation effect on palm oil
clinker properties and their influence on strength development in cement
mortar. Construction and Building Materials 125: 670-678.
Li,
X., Gan, C. & Hu, B. 2011. Accessibility to microcredit by Chinese rural
households. Journal of Asian Economics 22(3): 235-246.
Lincoln,
J.D., Ogunseitan, O.A., Shapiro, A.A. & Saphores, J.D.M. 2007. Leaching
assessments of hazardous materials in cellular telephones. Environmental
Science & Technology 41(7): 2572-2578.
Mani,
U., Prasad, A., Kumar, V.S., Lal, K., Kanojia, R., Chaudhari, B. & Murthy,
R. 2007. Effect of fly ash inhalation on biochemical and histomorphological changes
in rat liver. Ecotoxicology and Environmental Safety 68(1): 126-133.
Markad,
V.L., Gaupale, T.C., Bhargava, S., Kodam, K.M. & Ghole, V.S. 2015.
Biomarker responses in the earthworm, Dichogaster curgensis exposed to
fly ash polluted soils. Ecotoxicology and Environmental Safety 118:
62-70.
Musson,
S.E., Jang, Y.C., Townsend, T.G. & Chung, I.H. 2000. Characterization of
lead leachability from cathode ray tubes using the toxicity characteristic
leaching procedure. Environmental Science & Technology 34(20):
4376-4381.
Nayak,
A., Raja, R., Rao, K., Shukla, A., Mohanty, S., Shahid, M., Tripathi, R.,
Panda, B., Bhattacharyya, P. & Kumar, A. 2015. Effect of fly ash
application on soil microbial response and heavy metal accumulation in soil and
rice plant. Ecotoxicology and Environmental Safety 114: 257-262.
Pan,
Y., Wu, Z., Zhou, J., Zhao, J. Ruan, X., Liu, J. & Qian, G. 2013. Chemical
characteristics and risk assessment of typical municipal solid waste
incineration (MSWI) fly ash in China. Journal of Hazardous Materials 261:
269-276.
Pontes,
F.V.M., de O. Mendes, B.A., de Souza, E.M.F., Ferreira, F.N., da Silva, L.I.D.,
Carneiro, M.C., Monteiro, M.I.C., de Almeida, M.D., Neto, A.A. & Vaitsman,
D.S. 2010. Determination of metals in coal fly ashes using ultrasound-assisted
digestion followed by inductively coupled plasma optical emission spectrometry. Analytica chimica acta 659(1-2): 55-59.
Safiuddin,
M., M. Abdus Salam and M. Z. Jumaat (2011). Utilization of palm
oil fuel ash in concrete: A review. Journal of Civil Engineering
and Management 17(2): 234-247.
Sahibin,
A., Razi, I., Zulfahmi, A., Tukimat, L., Barzani, G., Jumaat, H. & Low, H.
2008. Heavy metals uptake by terung pipit (Solanum torvum) in ultrabasic
soil at Kuala Pilah, Negeri Sembilan. Sains Malaysiana 37(4): 323-330.
Shaheen,
S.M. & Rinklebe, J. 2015. Impact of emerging and low cost alternative
amendments on the (im) mobilization and phytoavailability of Cd and Pb in a
contaminated floodplain soil. Ecological Engineering 74: 319-326.
Singh,
J. & Kalamdhad, A.S. 2013. Assessment of bioavailability and leachability
of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecological
Engineering 52: 59-69.
Singh,
J. & Lee, B.K. 2015. Reduction of environmental availability and ecological
risk of heavy metals in automobile shredder residues. Ecological Engineering 81: 76-81.
Sun,
Y., Xie, Z., Li, J., Xu, J., Chen, Z. & Naidu, R. 2006. Assessment of
toxicity of heavy metal contaminated soils by the toxicity characteristic leaching
procedure. Environmental Geochemistry and Health 28(1-2): 73-78.
Tiwari,
M.K., Bajpai, S., Dewangan, U. & Tamrakar, R.K. 2015. Suitability of
leaching test methods for fly ash and slag: A review. Journal of Radiation
Research and Applied Sciences 8(4): 523-537.
Wang,
F.H., Zhang, F., Chen, Y.J., Gao, J. & Zhao, B. 2015. A comparative study
on the heavy metal solidification/ stabilization performance of four chemical
solidifying agents in municipal solid waste incineration fly ash. Journal of
Hazardous Materials 300: 451-458.
Wu,
S., Xu, Y., Sun, J., Cao, Z., Zhou, J., Pan, Y. & Qian, G. 2015. Inhibiting
evaporation of heavy metal by controlling its chemical speciation in MSWI fly
ash. Fuel 158: 764-769.
Xie,
Y. & Zhu, J. 2013. Leaching toxicity and heavy metal bioavailability of
medical waste incineration fly ash. Journal of Material Cycles and Waste
Management 15(4): 440-448.
Yap,
C.K. 2012. Application of factor analysis in geochemical fractions of heavy
metals in the surface sediments of the offshore and intertidal areas of
Peninsular Malaysia. Sains Malaysiana 41(4): 389-394.
Yunus,
K., Mohd Yusuf, N., Shazili, M., Azhar, N., Ong, M.C., Saad, S., Khan
Chowdhury, A.J. & Bidai, J. 2011. Heavy metal concentration in the surface
sediment of Tanjung Lumpur mangrove forest, Kuantan, Pahang, Malaysia. Sains
Malaysiana 40(2): 89-92.
Zhou, Y., Ning,
X.A., Liao, X., Lin, M., Liu, J. & Wang, J. 2013. Characterization and
environmental risk assessment of heavy metals found in fly ashes from waste
filter bags obtained from a Chinese steel plant. Ecotoxicology and
Environmental Safety 95: 130-136.
*Corresponding author;
email: mrkakanda@yahoo.com
|