Sains Malaysiana 47(3)(2018): 537–542
http://dx.doi.org/10.17576/jsm-2018-4703-14
Salicylic Acid in Nutrient Solution
Influence the Fruit Quality and Shelf Life of Cherry Tomato Grown in
Hydroponics
(Asid Salisilik dalam Larutan Nutrien
Mempengaruhi Kualiti Buah dan Jangka Hayat Tomato Ceri Hidroponik)
MOHAMMAD ZAHIRUL ISLAM1,2, MAHMUDA AKTER MELE1, KI-YOUNG CHOI3,
JUN PILL BAEK4 & HO-MIN KANG1,2*
1Department of
Horticulture, Kangwon National University, Chuncheon 24341, Korea
2Agriculture and Life
Science Research Institute, Kangwon National University
Chuncheon 24341, Korea
3Department of Controlled
Agriculture, Kangwon National University, Chuncheon 24341
Korea
4Department of Converged
and Integrated Agro-Industry Science, Catholic Sangji College
Andong 36686, Korea
Received: 10 August
2016/Accepted: 6 October 2017
ABSTRACT
Salicylic acid (SA)
is a plant hormone that has functional effects in plant. This study was
conducted to find out the effects of salicylic acid (SA)
on cherry tomato fruit quality and shelf life. Different concentrations (0.13,
0.25, 0.50 and 1.00 mM) SA were added in nutrient solution of
hydroponic system in plants vegetation and fruits development stage. Light-red
maturity stage of cherry tomato fruits was harvested to measure the harvest
time fruit quality and stored at 5℃ to measure
the postharvest quality and shelf life. Ethylene production and respiration
rate of tomato fruit at the harvest time and after storage was effectively
reduced by the 0.50 mM SA treatment. Increased acetaldehyde (p≤0.05)
as well as ethanol (p≤0.001) was performed in the 0.50 mM SA treatment
at after storage. The 0.50 mM SA treatment showed the lowest
fresh weight loss 3.08% and the longest shelf life 25 days by reducing decay,
fruits softening and fungal infection. Significantly lower fungal incidence (p≤0.001)
was observed in the 0.50 mM SA treatment. Final storage day
color development and lycopene content was lower in the 0.50 mM SA treatment
compare with other treatments. The 0.50 mM SA treatment
obtained the highest firmness at harvest time and it retain after storage.
Comparatively higher vitamin C and lower soluble solids was showed at the
harvest time and after storage. Therefore, the 0.50 mM SA treatment
is effective in increasing the quality and shelf life of cherry tomato fruit.
Keywords: Ethylene production;
firmness; respiration rate; soluble solids; vitamin C
ABSTRAK
Asid salisilik (SA)
merupakan hormon tumbuhan yang mempunyai kesan kefungsian pada tumbuhan. Kajian
ini dijalankan untuk mengetahui kesan asid salisilik (SA)
terhadap kualiti dan hayat simpanan buah tomato ceri. Kepekatan SA yang
berbeza telah ditambahkan dalam larutan nutrien sistem hidroponik dalam
peringkat pertumbuhan pokok dan buah-buahan. Buah tomato ceri dituai pada
peringkat kematangan merah bercahaya untuk mengukur waktu tuaian buah
berkualiti dan disimpan pada 5oC untuk mengukur kualiti
selepas tuaian dan hayat simpanan. Pengeluaran etilena dan kadar pernafasan
buah tomato pada waktu tuaian dan selepas penyimpanan dikurangkan oleh 0.50 mM SA dengan
berkesan. Peningkatan asetaldehid (p≤0.05) serta etanol (p≤0.001)
telah dilakukan dalam rawatan 0.50 mM SA selepas penyimpanan. Rawatan
0.50 mM SA menunjukkan penurunan berat segar terendah sebanyak
3.08% dan jangka hayat terpanjang selama 25 hari dengan mengurangkan pereputan,
pelembutan buah-buahan dan jangkitan kulat. Pertumbuhan kulat yang lebih rendah
(p≤0.001) diperhatikan dalam rawatan 0.50 mM SA.
Pertumbuhan warna penyimpanan hari terakhir dan kandungan lycopene lebih rendah
dalam rawatan 0.50 mM SA berbanding dengan rawatan lain.
Rawatan 0.50 mM SA memperoleh ketegaran tertinggi pada
masa tuaian dan bertahan selepas penyimpanan. Vitamin C yang lebih tinggi dan
pepejal larut rendah ditunjukkan pada masa penuaian dan selepas penyimpanan.
Oleh itu, rawatan 0.50 mM SA berkesan untuk meningkatkan kualiti
dan jangka hayat buah tomato ceri.
Kata
kunci: Kadar pernafasan: ketegaran; penghasilan etilena; pepejal larut; vitamin
C
REFERENCES
Achuo,
E.A., Audenaert, K., Meziane, H. & Hofte, M. 2004. The salicylic
acid-dependent defence pathway is effective against different pathogens in
tomato and tobacco. Plant Pathol. 53: 65-72.
Aghdam,
M.S., Asghari, M., Khorsandi, O. & Mohayeji, M. 2014. Alleviation of
postharvest chilling injury of tomato fruit by salicylic acid treatment. J.
Food Sci. Technol. 51(10): 2815-2820.
Babalar,
M., Asghari, M., Talaei, A. & Khosroshahi, A. 2007. Effect of pre- and
postharvest salicylic acid treatment on ethylene production, fungal decay and
overall quality of Selva strawberry fruit. Food Chem. 105: 449-453.
Cai,
X.Z. & Zheng, Z. 1999. Induction of systemic resistance in tomato by and
incompatible race of Cladosporium fulvum and the accumulation dynamics
of salicylic acid in tomato plants. Acta. Hort. Sinica. 29: 261-264.
Enyedi,
A.J., Yalpani, N., Silverman, P. & Raskin, I. 1992. Localization,
conjugation, and function of salicylic acid in tobacco during the
hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. USA 89:
2480-2484.
Fatemi,
H., Mohammadi, S. & Aminifard, M.H. 2013. Effect of postharvest salicylic
acid treatment on fungal decay and some postharvest quality factors of kiwi
fruit. Arch. Phytopathology Plant Protect. 46(11): 1338-1345.
Fish,
W.W., Perkins-Veazie, P. & Collins, J.K. 2002. A quantitative assay for
lycopene that utilizes reduced volumes of organic solvents. J. Food Compos.
Anal. 15: 309-317.
Han,
T. & Li, L.P. 1997. Physiological effect of salicylic acid on storage of
apple in short period. Plant Physiol. Comm. 33: 347-348.
Islam,
M.Z., Mele, M.A., Baek, J.P. & Kang, H.M. 2016. Cherry tomato qualities
affected by foliar spraying with boron and calcium. Hortic. Environ.
Biotechnol. 57(1): 46-52.
Islam,
M.Z., Baek, J.P., Kim, Y.S. & Kang, H.M. 2013. Characteristics of chilling
symptoms of cherry tomato compared to beefsteak tomato harvested at different
ripening stages. J. Pure Appl. Microbio. 7: 703-709.
Janda,
T., Gondor, O.K. & Yordanova, R. 2014. Salicylic acid and photosynthesis:
Signaling and effects. Acta Physiol. Plant 36(10): 2537-2546.
Javanmardi,
J. & Akbari, N. 2016. Salicylic acid at different plant growth stages
affects secondary metabolites and phisico-chemical parameters of greenhouse
tomato. Adv. Hort. Sci. 30(3): 151-157.
Kazemi,
M. 2014. Effect of foliar application with salicylic acid and methyl jasmonate
on growth, flowering, yield and fruit quality of tomato. Bull. Env.
Pharmacol. Life. Sci. 3: 154-158.
Knee,
M. & Hatfield, S.G.S. 1981. The metabolism of alcohols by apple fruit
tissue. J. Sci. Food Agric. 32: 593-600.
Kumar,
D., Mishra, D.S., Chakraborty, B. & Kumar, P. 2013. Pericarp browning and
quality management of litchi fruit by antioxidants and salicylic acid during
ambient storage. J. Food Sci. Technol. 50(4): 797-802.
Leslie,
C.A. & Romani, R.J. 1988. Inhibition of ethylene biosynthesis by salicylic
acid. Plant Physiol. 88: 833-837.
Mansouri,
H. 2012. Salicylic acid and sodium nitroprusside improve postharvest life of
chrysanthemums. Sci. Hort. 145: 29-33.
Mo,
Y., Gong, D., Liang, G., Han, R., Xie, J. & Li, W. 2008. Enhanced
preservation effects of sugar apple fruits by salicylic acid treatment during
post-harvest storage. J. Sci. Food Agric. 88: 2693-2699.
Park,
K.W., Kang, H.M. & Kim, C.H. 2000. Comparison of storability on film
sources and storage temperature for fresh Japanese mint in MA storage. J.
Bio-Environ. Control. 9(1): 40-46.
Pesis,
E. 2005. The role of the anaerobic metabolites, acetaldehyde and ethanol, in
fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest
Biol. Technol. 37: 1-19.
Pila,
N., Gol, N.B. & Rao, T.V.R. 2010. Effect of post-harvest treatments on
physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. Am-Euras. J. Agric. Environ. Sci. 9:
470-479.
Rahmawati,
S.L., Esyanti, R.R. & Gunaeni, N. 2014. The role of leaf extracts as
plant-activator to enhance salicylic acid production on tomato plant (Lycopersicon
esculentum Mill.) infected by CMV (cucumber mosaic virus). Intl. J.
Chem. Environ. Biol. Sci. 2(2): 2320-4087.
Rohani,
M.Y., Zaipun, M.Z. & Norhayati, M. 1997. Effect of modified atmosphere on
the storage life and quality of Eksotika papaya. J. Trop. Agric. Food Sci. 25:
103-113.
Rowshan,
V. & Bahmanzadegan, A. 2013. Effects of salicylic acid on essential oil
components in Yarrow (Achillea millefolium Boiss ). Int. J. Basic
Sci. Appl. Res. 2: 347-351.
Sato,
S., Sakaguchi, S., Furukawa, H. & Ikeda, H. 2006. Effects of NaCl
application to hydroponic nutrient solution on fruit characteristics of tomato
(Lycopersicon esculentum Mill.). Sci. Hort. 109: 248-253.
Spletzer,
M.E. & Enyedi, A.J. 1999. Salicylic acid induces resistance to Alternaria
solani in hydroponically grown tomato. Phytopathol. 89: 722-727.
Supapvanich, S.
& Promyou, S. 2013. Effciency of salicylic acid application on postharvest perishable
crops. In Salicylic Acid: Plant Growth and Development, edited by Hayat,
S., Ahmad, A. & Alyemeni, M.N. New York: Springer Science + Business Media
Dordrecht Press. pp. 339-355.
Tigist,
M., Workneh, T.S. & Woldetsadik, K. 2013. Effects of variety on the quality
of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3):
477-486.
Wang,
L.J. & Li, S.H. 2006. Salicylic acid-induced heat or cold tolerance in
relation to Ca2+ homeostasis
and antioxidant systems in young grape plants. Plant Sci. 170: 685-694.
Wang,
L., Chen, S., Kong, W., Li, S. & Archbold, D.D. 2006. Salicylic acid pretreatment
alleviates chilling injury and affects the antioxidant system and heat shock
proteins of peaches during cold storage. Postharvest Biol. Technol. 41:
244-251.
Yildirim,
E. & Dursun, A. 2009. Effect of foliar salicylic acid applications on plant
growth and yield of tomato under greenhouse conditions. Acta Hortic.
807(56): 395-400.
Zheng,
Y. & Zhang, Q. 2004. Effects of polyamines and salicylic acid postharvest
storage of ‘Ponkan’ mandarin. Acta Hort. 632: 317-320.
*Corresponding author;
email: hominkang@kangwon.ac.kr
|