Sains Malaysiana 47(4)(2018):
691-698
http://dx.doi.org/10.17576/jsm-2018-4704-06
Proliferation and Osteoblast Differentiation
Mice Dental Pulp Stem Cells between Enzyme Digestion and Outgrowth
Method
(Proliferasi dan Pembezaan Osteoblas Sel Stem Pulpa Gigi Mencit antara Kaedah
Pencernaan
Enzim
dan Eksplan)
FARINAWATI
YAZID1*, NUR ATMALIYA LUCHMAN1, ROHAYA MEGAT
ABDUL WAHAB1, SHAHRUL HISHAM ZAINAL ARIFFIN2
& SAHIDAN SENAFI2
1Faculty of Dentistry,
Universiti Kebangsaan Malaysia, Jalan Raja Muda
Abdul Aziz,
50300 Kuala Lumpur, Federal Territory, Malaysia
2School of Bioscience
and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan, Malaysia
Received:
26 July 2017/Accepted: 6 November
2017
ABSTRACT
The isolation method
for dental pulp stem cells (DPSCs) is still unclear to obtain a
conducive environment for DPSCs to proliferate. Enzymatic digestion and outgrowth method are two commonly
used methods for
DPSCs isolation but are not
well characterized in mice DPSCs. This study aimed to compare these
isolation methods and differentiation potential of mice DPSCs into
bone cells. Dental pulp was extracted from mice’s
incisors and subjected to isolation either by collagenase
1A or culture of pulp tissue in complete alpha-Modified Eagle Medium
(αMEM). Both cells isolated were cultured
until passage
4 and subjected to in vitro proliferation and
differentiation analysis. Both cells exhibited fibroblast- liked morphology, but
cells isolated
by enzyme digestion proliferate faster compare to outgrowth method.
After 21 days of osteoblast differentiation, DPSCs
isolated from enzyme digestion method showed alkaline phosphatase
(ALP) activity slightly different as compared to outgrowth method.
In conclusion, there is a significant difference between the cells
isolated from enzyme digestion compare to outgrowth method with regard to proliferation and osteoblast differentiation. Thus, it is preferable
to isolate by enzyme digestion as it is faster and consistent compared
to outgrowth method.
Keywords: Adherent cells; alkaline phosphatase; in vitro; mesenchymal
stem cells
ABSTRAK
Kaedah pemencilan bagi sel stem pulpa gigi (DPSCs)
masih
kurang jelas terutamanya bagi mendapatkan persekitaran yang
kondusif
bagi DPSCs berproliferasi. Kaedah pencernaan enzim dan eksplan merupakan dua kaedah yang
biasa digunakan untuk memencilkan DPSCs namun kurang dicirikan pada DPSCs mencit. Kajian ini bertujuan untuk
membandingkan kaedah
pemencilan dan potensi perbezaan DPSCs mencit kepada sel
tulang. Pulpa
gigi diekstrak daripada gigi kacip
mencit
dan pemencilan sel dilakukan sama ada
menggunakan
kolagenase
1A atau pengkulturan tisu pulpa pada medium lengkap alpha-modified eagle
medium (αMEM). Kedua-dua sel yang
dipencilkan
dikulturkan
sehingga
pasaj 4 dan analisis proliferasi dan pembezaan secara in vitro dilakukan. Kedua-dua sel menunjukkan morfologi fibroblas namun sel yang diasingkan
melalui pencernaan enzim berproliferasi lebih cepat berbanding
dengan kaedah
eksplan. Selepas 21 hari pembezaan kepada sel
osteoblas,
DPSCs yang dipencilkan melalui kaedah pencernaan enzim menunjukkan aktiviti alkali fosfatase (ALP)
sedikit
berbeza berbanding kaedah eksplan. Kesimpulannya, terdapat perbezaan yang
signifikan
daripada sel yang dipencilkan melalui kaedah percernaan enzim berbanding eksplan terutamanya daripada segi proliferasi dan pembezaan osteoblas.
Oleh itu, adalah lebih baik
untuk memencilkan
sel melalui kaedah
pencernaan enzim
kerana ia
adalah lebih
cepat dan konsisten
berbanding dengan
kaedah eksplan.
Kata kunci: Alkali fosfatase; in vitro; sel melekat; sel stem mesenkima
REFERENCES
Akmal,
M.N., Zarina, Z.I.,
Rohaya, M., Sahidan, S.,
Zaidah, Z. & Hisham, Z.S. 2014. Isolation and characterization of dental pulp stem cells from murine incisors. Journal
of Biological Sciences 14(4): 327.
Bakopoulou,
A., Leyhausen, G.,
Volk,
J., Tsiftsoglou, A.,
Garefis, P., Koidis, P. &
Geurtsen,
W. 2011. Assessment of the impact
of two different isolation methods
on the osteo/odontogenic differentiation potential
of human dental
stem cells
derived from deciduous teeth. Calcified Tissue
International 88(2): 130-141.
Barbara, Z., Eriberto, B., Giulia, B., Letizia, F., Chiara, G., Ferrarese,
N., Stefano,
S. & Edoardo, S. 2011. Dental pulp stem cells and tissue engineering strategies
for clinical application on odontoiatric field
Ed.: INTECH Open
Access Publisher.
Beck, G.R., Sullivan,
E.C., Moran, E. & Zerler, B. 1998. Relationship between alkaline phosphatase
levels, osteopontin expression, and
mineralization in differentiating
MC3T3-E1 osteoblasts. Journal
of Cellular Biochemistry 68(2): 269-280.
Birmingham, E.,
Niebur, G., McHugh, P.,
Shaw, G., Barry,
F.P. & McNamara, L.M. 2012. Osteogenic differentiation of mesenchymal stem cells is
regulated by osteocyte and osteoblast cells in a simplified bone
niche. Eur. Cell Mater. 23: 13-27.
de Souza, L.M., Bittar, J.D.,
da Silva, I.C.R.,
de Toledo, O.A.,
de Macedo
Brígido, M. &
Fonseca, M.J.P. 2015.
Comparative isolation protocols and characterization of stem cells
from human primary and
permanent teeth
pulp. Brazilian
Journal of Oral Sciences 9(4):
427-433.
Djouad, F., Jackson, W.M., Bobick, B.E.,
Janjanin, S., Song,
Y., Huang, G. & Tuan, R.S. 2010. Activin A expression regulates multipotency of mesenchymal progenitor cells. Stem Cell Res. Ther. 1(2): 11.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause,
D., Deans, R.,
Keating, A.,
Prockop, D. & Horwitz, E. 2006. Minimal criteria
for defining multipotent mesenchymal stromal cells: The
International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317.
Ellerström, C., Hyllner,
J. & Strehl, R. 2010. Single cell enzymatic dissociation of human embryonic stem
cells: A straightforward, robust, and standardized culture method.
Human Embryonic Stem Cell Protocols 584:
121-134.
Golub, E.E. &
Boesze-Battaglia, K. 2007. The role of alkaline phosphatase in mineralization.
Current Opinion in Orthopaedics
18(5): 444-448.
Gronthos, S., Brahim, J.,
Li, W., Fisher,
L., Cherman, N.,
Boyde, A., DenBesten, P., Robey, P.G. & Shi, S. 2002. Stem cell properties of human dental pulp stem cells. Journal
of Dental Research 81(8):
531-535.
Hilkens,
P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., Politis, C., Lambrichts, I. &
Bronckaers, A. 2013.
Effect of isolation methodology on stem cell properties
and multilineage differentiation potential of human dental pulp
stem cells. Cell and
Tissue Research 353(1): 65-78.
Huang, G.T.J., Sonoyama, W., Chen, J. & Park, S.H. 2006. In vitro characterization of human dental
pulp cells: Various isolation methods and culturing environments.
Cell and Tissue Research 324(2): 225-236.
Huang, W., Carlsen, B., Rudkin, G., Berry,
M., Ishida, K., Yamaguchi, D.T. & Miller, T.A. 2004. Osteopontin is a negative regulator
of proliferation and differentiation in MC3T3-E1 pre-osteoblastic
cells. Bone 34(5): 799-808.
Kermani, S., Megat
Abdul Wahab, R., Zarina Zainol Abidin, I., Zainal Ariffin, Z., Senafi, S. & Hisham Zainal Ariffin, S. 2014. Differentiation capacity of mouse dental
pulp stem cells into osteoblasts and osteoclasts. Cell Journal
(Yakhteh)
16(1): 31-42.
Kruger, N.J. 2009. The Bradford
method for protein
quantitation. The
Protein Protocols Handbook, edited by Walter,
J.M. New Jersey: Humana Press. pp.
17-24.
Lopez-Cazaux, S., Bluteau, G.,
Magne, D., Lieubeau, B.,
Guicheux, J. & Alliot-Licht, B. 2006.
Culture medium modulates the
behaviour
of human dental
pulp-derived cells: technical note. Eur. Cell
Mater. 11: 35-42.
Nadig, R.R. 2009. Stem cell therapy-hype or hope? A review.Journal of Conservative Dentistry 12(4): 131-138.
Nakashima, M. 1991. Establishment of primary cultures
of pulp cells from
bovine permanent incisors. Archives
of Oral Biology 36(9): 655-663.
Nourbakhsh,
N., Talebi, A.,
Mousavi, B.,
Nadali, F., Torabinejad, M., Karbalaie,
K. & Baharvand, H. 2008. Isolation of mesenchymal stem cells from
dental pulp of exfoliated human deciduous teeth. Cell J. 10(2): 101-108.
Raouf, A. & Seth, A. 2002. Discovery of osteoblast-associated genes
using cDNA microarrays. Bone
30(3): 463-471.
Schnerch, A., Cerdan,
C. & Bhatia, M. 2010.
Distinguishing between mouse and
human pluripotent stem cell regulation: The best laid plans of mice
and men. Stem Cells
28(3): 419-430.
Seo, B.M., Miura, M., Gronthos, S.,
Bartold, P.M., Batouli,
S.,Brahim, J.,
Young, M., Robey, P.G.,Wang, C.Y. &
Shi, S. 2004. Investigation of multipotent postnatal
stem cells from human periodontal ligament. The Lancet 364(9429): 149-155.
Shi, S., Bartold, P., Miura, M., Seo, B., Robey,
P. & Gronthos, S. 2005.
The
efficacy of mesenchymal stem
cells to regenerate
and repair dental structures. Orthodontics
& Craniofacial Research 8(3):
191-199.
Sudo,
H., Kodama,
H.A., Amagai, Y., Yamamoto, S. & Kasai,
S. 1983.
In vitro differentiation and calcification in a new
clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of Cell Biology 96(1):
191-198.
Thomas, C.H.,
Collier, J.H., Sfeir, C.S. & Healy,
K.E. 2002. Engineering gene expression and protein
synthesis by modulation of nuclear shape. Proceedings of the National Academy of Sciences 99(4): 1972-1977.
Yildirim, S. 2013. Dental pulp is a connective tissue. In Dental Pulp Stem Cells.
New York: Springer. pp. 17-24.
*Corresponding author; email: drfarinawati@ukm.edu.my
|