Sains
Malaysiana 47(4)(2018): 699-705
http://dx.doi.org/10.17576/jsm-2018-4704-07
The Effect of Alkaline Treatment on the
Mechanical Properties of Treated Sugar Palm Yarn Fibre
Reinforced Unsaturated Polyester Composites Reinforced with Different
Fibre Loadings of Sugar Palm Fibre
(Kesan Rawatan Alkali terhadap Sifat Mekanikal Serabut Kabung Yarn Terawat Diperkuat dengan Komposit Poliester tak Tepu Diperkuat dengan Pembebanan
Berbeza Serabut
Kabung)
MOHD NURAZZI
NORIZAN1, KHALINA ABDAN1,2*,
MOHD SAPUAN SALIT1,2 & RAHMAH MOHAMED3
1Faculty of Engineering,
Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Tropical Forestry and Forest Products (INTROP),
Universiti Putra Malaysia,
43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Faculty of Applied Sciences, Universiti
Teknologi MARA (UiTM),
40450, Shah Alam,
Selangor Darul Ehsan, Malaysia
Received:
27 February 2015/Accepted: 15
June 2017
ABSTRACT
The aim of this
paper was to describe
the effects of treated sugar
palm yarn
fibre loading on the mechanical properties of reinforced unsaturated polyester composites. Composites with varying fibre loads
(10, 20, 30, 40 and
50 wt. %) were prepared using
a hand-layup process.
The composites were
tested for
tensile, flexural
and impact strength
according to ASTM
D3930, ASTM D790 and ASTM D256 standards, respectively. The results
showed that an increase in fibre loading
of up to 30 wt. % increased tensile strength (31.27 MPa), tensile
modulus (4.83 GPa), flexural strength (58.14 MPa) and modulus (4.48
GPa). Maximum loading can be attained
at 40 wt. % of fibre loading for impact strength (38 kJ/m2).
The effectiveness of stress transfer mechanism through the fibre-matrix
interaction, coupled with the optimization of
fibre
loading in resisting fracture
and failure, boosts
the overall mechanical performance of sugar
palm composite.
Keywords: Alkaline
treatment; fibre loadings; mechanical
properties; sugar palm; unsaturated polyester
ABSTRAK
Matlamat kajian ini adalah untuk menerangkan kesan muatan serabut kabung terawat terhadap sifat mekanikal komposit poliester tak
tepu diperkuat. Komposit dengan muatan serabut yang berbeza (10, 20, 30, 40 dan 50 %
bt.) disediakan
menggunakan
proses
layup tangan. Komposit ini diuji untuk kekuatan tegangan, lenturan dan hentaman mengikut piawai ASTM D3930,
ASTM D790 dan ASTM D256. Analisis menunjukkan dengan peningkatan muatan serabut sehingga 30 % bt. akan
meningkatkan kekuatan
tegangan (31.27 MPa), modulus tegangan
(4.83 GPa), kekuatan
lenturan (58.14 MPa) dan modulus
(4.48 GPa). Muatan
maksimum dapat diperoleh pada 40 % bt. muatan
serabut dengan kekuatan hentaman (38 kJ/m2).
Keberkesanan mekanisme pemindahan
tekanan melalui
interaksi matriks-serabut, digabungkan
dengan pengoptimuman
muatan serabut dalam rintangan retakan dan kerosakan,
meningkatkan keseluruhan
prestasi mekanikal untuk komposit kabung.
Kata kunci: Kabung; muatan serabut; poliester tak tepu;
rawatan alkali; sifat
mekanikal
REFERENCES
Abdul Khalil,
H.P.S., Hanida, S., Kang, C.W. &
Nik Fuaad, N.A. 2007. Agro-hybrid composite: The effects on mechanical and physical
properties of oil palm fiber
(EFB)/glass hybrid reinforcedpolyester composites. Journal
of Reinforced Plastics and Composites 26(2): 203-218.
Aji, I.S., Zainudin, E.S., Khalina, A., Sapuan, S.M. &
Khairul, M.D. 2011. Studying
the effect of fiber size and fiber loading on the mechanical properties
of hybridized kenaf/PALF-reinforced HDPE
composite. Journal
of Reinforced Plastics and Composites 30(6): 546-553.
Alamri, H. &
Low, I.M. 2012. Microstructural, mechanical and thermal characteristics of recycled cellulose fiber-halloysite-
epoxy hybrid nanocomposites. Polymer
Composite 33(4): 589-600.
Aziz, S.H. &
Ansell, M.P. 2004. The effect of alkalization and fibre
alignment on the mechanical and thermal properties of kenaf
and hemp bast fibre composites: Part 1 - polyester
resin matrix. Composites Science
and Technology 64(9): 1219-1230.
Bachtiar, D., Sapuan, S.M. & Hamdan, M.M. 2010. Flexural
properties of alkaline treated sugar palm fibre
reinforced epoxy composites. International Journal
of Automotive and Mechanical Engineering 1: 79-90.
Bachtiar, D., Sapuan, S.M. & Hamdan, M.M. 2008. The effect
of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design 29(7): 1285-1290.
Bismarck, A., Mishra, S.
& Lampke, T. 2005.
Plant fibers as reinforcement for green composites. Natural Fibers, Biopolymers and Biocomposites 10: 9780203508206.
Bledzki, A.K., Jaszkiewicz, A.,
Murr, M., Sperber, V.E., Lützkendorf, R. & Reußmann, T. 2008. Processing techniques for natural-and
wood-fibre composites. Properties
and Performance of Natural-Fibre Composites. Cambridge: Woodhead. pp.
163-192.
Garcia, J.C.,
Dupeyre, D. & Vignon, M.R. 1998.
Fibres from semi-retted hemp bundles
by steam explosion treatment. Biomass and Bioenergy 14(3): 251-260.
Hatem, A. & Meng, L.I. 2012. Mechanical properties and water absorption behaviour of recycled cellulose
fibre
reinforced epoxy composites. Polymer
Testing 31(5): 620-628.
Ishak, M.R., Sapuan,
S.M., Leman, z., Rahman, M.z.A. &
Anwar, U.M.K. 2011. Characterization
of sugar palm (Arenga pinnata) fibres. Journal of Thermal
Analysis and Calorimetry 109(2): 981-989.
Ismail, H., Pasbakhsh, P., Fauzi, M.N.A. & Bakar, A.A. 2008. Morphological, thermal and tensile properties of halloysite
nanotubes filled ethylene
propylene diene monomer
(EPDM) nanocomposites. Polymer
Testing 27(7): 841-850.
Jähn, A., Schröder, M.W.,
Füting, M., Schenzel, K. &
Diepenbrock, W. 2002.
Characterization of alkali treated flax fibres
by means of FT Raman spectroscopy and environmental scanning electron
microscopy. Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy 58(10): 2271-2279.
Li, X., Tabil, L.G. &
Panigrahi, S. 2007.
Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and
the Environment 15(1): 25-33.
Mallick, P.K.
2007. Fiber-reinforced Composites: Materials, Manufacturing, and Design, 3rd ed. New York: CRC Press.
Mansor, M.R., Sapuan, S.M., zainudin, E.S., Nuraini, A.A. &
Hambali, A. 2013. Stiffness prediction of
hybrid kenaf/ glass
fiber reinforced polypropylene composites using
rule of
mixtures (ROM)
and rule of hybrid
mixtures (RoHM).
Journal of Polymer
Materials 30(3): 321.
Mishra, S., Mohanty, A.K., Drzal,
L.T., Misra, M.,
Parija, S., Nayak,
S.K. & Tripathy, S.S. 2003. Studies on mechanical performance of biofibre/glass
reinforced polyester hybrid
composites. Composites
Science and Technology 63(10): 1377-1385.
Mohanty, A.K.,
Misra, M. & Drzal,
L.T. 2002. Sustainable bio- composites from renewable resources: Opportunities
and challenges in the
green materials world.
Journal of Polymers and the
Environment 10(1): 19-26.
Mohanty, A.K., Misra, M. &
Drzal, L.T. 2001a. Compos Interface.
Cross
Ref CAS Web of Science® Times Cited 8(313).
Mohanty, A.K., Misra, M. & Drzal, L.T. 2001b. Surface modifications
of natural
fibers and performance
of the resulting biocomposites: An overview.
Composite Interfaces 8(5): 313-343.
Nurazzi,
N.M., Khalina, A., Sapuan, S.M. & Rahmah, M. 2017a. A
review: Fibres, polymer
matrices and composites. Pertanika J. Sci. & Technol 25(4): 1085-1102.
Nurazzi, N.M., Khalina, A., Sapuan, S.M. & Rahmah, M. 2017b. Physical, mechanical and thermal properties
of sugar palm yarn fibre loading on reinforced
unsaturated polyester composites. Journal of Physical Science 28(3): 115-136.
Pang, A.L., Ismail,
H. & Bakar, A.A. 2015.
Effects of kenaf loading on processability and properties of linear low- density polyethylene/poly (vinyl alcohol)/kenaf composites.
BioResources 10(4):
7302-7314.
Rajesh, G., Reena, G., Rama, K.A.
& Lakshmipathi, B.R.
2011. Effect of fibre volume fraction on
the tensile strength of Banana fibre
reinforced vinyl ester resin composites. IJAEST-
International Journal of Advanced Engineering Sciences and Technologies
1(4): 89-91.
Ramesh, M., Atreya, T.S.A., Aswin, U.S.,
Eashwar, H. &
Deepa, C. 2014.
Processing and mechanical property evaluation of banana fiber reinforced
polymer composites. Procedia
Engineering 97: 563-572.
Reddy, N. & Yang, Y. 2005. Biofibers from agricultural byproducts for industrial applications.
TRENDS in Biotechnology 23(1): 22-27.
Sahari, J., Sapuan,
S.M., zainudin, E.S. & Maleque,
M.A. 2013. Thermo-mechanical
behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydrate Polymers 92(2): 1711-1716.
Santiagoo, R., Ismail, H. & Hussin, K. 2011. Mechanical properties,
water absorption, and swelling behaviour
of rice husk
powder filled polypropylene/recycled acrylonitrile butadiene rubber (PP/NBRr/RHP) biocomposites using silane as a coupling agent. BioResources 6(4): 3714-3726.
Satyanarayana, K.G., Arizaga,
G.G.C. & Wypych,
F. 2009. Biodegradable composites based on lignocellulosic fibers - An overview. Progress
in Polymer Science
34(9): 982-1021.
Shalwan,
A. &
Yousif, B.F. 2013. In state
of art: Mechanical and tribological
behaviour of polymeric composites based
on natural fibres.
Materials & Design 4: 14-24.
Sreekala,
M.S., George, J.,
Kumaran, M.G. & Thomas, S. 2002.
The mechanical
performance of hybrid
phenol- formaldehyde-based composites reinforced
with glass and oil palm fibres. Composites Science
and Technology 62(3): 339-353.
Sreekumar, P.A., Joseph, K., Unnikrishnan,
G. & Thomas, S. 2007. A comparative study on mechanical properties of sisal- leaf fibre-reinforced polyester composites prepared by
resin transfer and compression moulding techniques. Composites
Science and Technology 67(3):
453-461.
Supri, A.G. &
Ismail, H. 2011. The Effect of isophorone diisocyanate-polyhydroxyl groups
modified water hyacinth fibers (Eichhornia crassiper) on properties of low density
polyethylene/acrylonitrile butadiene styrene (ldpe/abs) composites. Polymer-Plastics Technology and Engineering
50(2): 113-120.
Thomason, J.L. & Vlug, M.A. 1996. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. tensile and
flexural modulus.
Composites Part
A: Applied Science
and Manufacturing 27(6): 477-484. Wambua, P., Ivens, J. &
Verpoest, I. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics?
Composites Science and Technology
63(9): 1259-1264.
*Corresponding author; email: khalina.upm@gmail.com
|