Sains Malaysiana 47(4)(2018): 797-803
http://dx.doi.org/10.17576/jsm-2018-4704-19
Determination of Uranium Internal Dose
Exposure through Soil Digestion Using
RDRC and URODC Software
(Penentuan Dos
Dedahan Dalaman
Uranium Melalui Penghadaman Tanih Menggunakan
Perisian RDRC dan URODC)
MOHD IZWAN
ABDUL ADZIZ, NOR AMIRA AMALINA MOHD BADRI & KHOO KOK SIONG*
Pusat Pengajian Fizik
Gunaan, Fakulti
Sains dan Teknologi,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 14 September 2017/Accepted: 25 October 2017
ABSTRACT
This study
was conducted to determine the dose of internal exposure through
ingestion of soil in the vicinity of the repository facility in
Bukit Kledang, Ipoh, Perak. Data from this
study can assess the risk of radiation exposure to the health
of local population, specifically blood, liver and bone cancers.
Activities of radionuclide 238U in MG and M10 in the
gastric phase are 1.118 ±
0.062 and 1.232 ± 0.073 Bq/kg, while
the respective activities in the gastrointestinal phase are 0.553 ± 0.051 and 0.905 ± 0.082 Bq/kg.
Samples of M10 recorded the highest reading of internal exposure
in both phases. Digestion of 2 g soil from M10 samples on gastric
phase generated the annual effective dose of
3.168 μSv/year with an assessment
of cancer risk by 0.001% within 70 years to public. Organ dose
for blood, liver and bone were
0.59, 11.60 and
65.95 μSv, respectively. Analysis
of organ doses
based on the
concentration of 238U
found that M10 has higher dose compared to MG. Risk assessment predicted
for 70 years after the ingestion of the soil
for blood
cancer was 0.003% and liver cancer was 0.004% while the
highest cancer risk was for bone cancer with 0.023%. Although
the concentration of specific activity of 238U identified is low, it is shown that the internal dose exposure
as a result of digestion of radionuclides are below the standard and can be considered as safe for public.
Keywords: Cancer risk; internal dose exposure; repository facility; soil sample;
238U
ABSTRAK
Kajian ini dijalankan untuk menentukan dos dedahan dalaman melalui penghadaman tanih di kawasan sekitar fasiliti repositori di Bukit Kledang, Ipoh,
Perak. Data daripada
kajian ini
dapat menilai risiko
dedahan sinaran
terhadap kesihatan penduduk setempat khususnya penyakit kanser darah, hati
dan tulang.
Aktiviti spesifik radionuklid 238U di MG dan
M10 pada fasa
gastrik masing-masing adalah 1.118 ±
0.062 dan 1.232 ± 0.073 Bq/kg,
manakala nilai
aktiviti spesifik tanih di MG dan M10 pada fasa gastrousus
pula masing-masing adalah
0.553 ± 0.051 dan 0.905 ± 0.082 Bq/
kg. Sampel
M10 merekodkan bacaan
dos dedahan dalaman tertinggi berbanding dengan sampel MG pada kedua-dua fasa. Penghadaman 2 g tanih pada fasa
gastrik sampel
M10, merekodkan dos berkesan tahunan sebanyak 3.168 µSv/ tahun dengan
penilaian risiko
kanser sebanyak 0.001% dalam jangka masa 70 tahun untuk orang awam. Dos organ bagi
darah, hati
dan tulang masing-masing
adalah sebanyak
0.59, 11.60 dan 65.95
µSv. Dos organ
ini juga dianalisis berdasarkan kepekatan 238U.
Didapati bahawa
dos ini lebih tinggi
untuk M10 berbanding
MG. Penilaian risiko dalam jangka masa 70 tahun bagi kanser
darah adalah
0.003%, kanser hati sebanyak
0.004% manakala paling tinggi
untuk mendapat kanser tulang iaitu sebanyak 0.023%.
Lantaran
nilai kepekatan aktiviti 238U
yang dikenal pasti adalah rendah maka ia
membuktikan bahawa dedahan sinaran dan dos dedahan dalaman sinaran akibat penghadaman radionuklid ini adalah di bawah piawai yang ditetapkan.
Kata kunci: Dos dedahan dalaman; fasiliti repositori; risiko kanser; sampel tanih; 238U
REFERENCES
AELB. 2016. Tapak Repositori Jangka Panjang di Malaysia. Bangi: Lembaga
Perlesenan Tenaga Atom Malaysia.
Al-Kharouf,
S.J., Al-Hamarneh, I.F.
& Dababneh, M. 2008. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. Journal of Environmental Radioactivity 99(7): 1192-1199.
ATSDR. 2013. Toxicological
Profile for Uranium. Georgia: Agency for Toxic Substances
and Disease Registry.
ATSDR. 1999. Toxicological
Profile for Uranium. Georgia: Agency for Toxic Substances
and Disease Registry.
Daniela, R. & Kratz, K. 1996. Determination of organic
fluorine in aqueous samples with neutron activation analysis
in comparison with the DIN method.
Fresenius’ Journal of Analytical Chemistry
354(7-8): 892-894.
Hollriegl, V., Li, W.B., Leopold, K., Gerstmann, U. & Oeh, U. 2010. Solubility of uranium and thorium from healing earth in
synthetic gut fluids: A case study for use in dose assessment.
Science of Total Environment 408(23): 5794-
5800.
ICRP 72. 2007. Uranium series ICRP 72 dose coefficients for the
public.
Intawongse, M. &
Dean, J.R. 2006. In-vitro
testing for assessing oral bioaccessibility of
trace metals in
soil and
food samples. Journal of Trends
of Analytical Chemistry
25(9): 876-886.
Kathren,
R.L. &
Burklin,
R.K. 2008. Acute chemical toxicity
of uranium. Health Physics 94(2): 170-179.
Lee, S.K. & Wagiran,
H. 2014. A survey of
gross alpha and gross beta activity in soil samples in Kinta District,
Perak, Malaysia. Radiation Protection Dosimetry 162(3): 345-350.
Nur, S.A.R., Sukiman, S., Amran, A.M., Faizal, M. & Khoo, K.S. 2015. Solubility of 238U radionuclide
from various types of soil in synthetic gastrointestinal fluids
using “US in vitro”
digestion method. AIP
Conference Proceedings 1659(1): 050004.
Oliver, M.A. 1999.
Soil and human
health: A review.
European Journal
of Soil Science 48(4): 573-592.
Pulhani, V.A., Dafauti, S., Hedge, A.G.,
Sharma, R.M. & Mishra, U.C.
2005. Uptake and distribution of natural radioactivity in wheat plants from soil. Journal of Environmental Radioactivity 79(3): 331-346.
Qing, H. 2011. Radioactivity Abundance in Simulation. http://www.hep.princeton.edu/~mcdonald/dayabay/He/ Radioactivity.pdf. Accessed on 1 May
2017.
Traber, S.C., Hollriegl, V., Li, W.B.,
Nebelung, K., Ruhm,
W., Oeh, U. & Michalke, B. 2015. Calculation of internal dose from ingested soil-derived uranium
in humans: Application of a new method.
Radiation and Environmental Biophysics 54(3): 265-272.
Tzortzis, M., Svoukis,
E. & Tsetos, H. 2004. A comprehensive study of natural gamma
radioactivity levels and
associated dose rates from surface soils
in Cyprus. Radiation Protection
Dosimetry 109(3):
217-224.
UNSCEAR. 2000. Sources and Effects of Ionizing
Radiation. http:// www.unscear.org/docs/publications/2000/UNSCEAR_2000_ Report_vol.I.pdf. Accessed on 1 January 2017.
UNSCEAR. 2008. Sources and Effects of Ionizing
Radiation. http:// www.unscear.org/docs/publications/2008/UNSCEAR_2008_ gA Report-CORR.pdf.
Accessed on 20 January
2017.
WHO. 2003. Guidelines
for Drinking Water Quality. Geneva: World Health Organization.
WISE. 2016. Dose and Risk
Calculators. http://www.wise- uranium.org/. Accessed
on 1 December 2016.
Yasmin, M.I.P., Rashid, N.S.A., Majid,
A.A. & Khoo, K.S. 2016. Internal dose
assessment of U-238 contaminated soils based on in-vitro gastrointestinal protocol.
AIP Conference Proceedings 1799(1): 030005.
*Corresponding author;
email: khookoksiong@gmail.com