Sains Malaysiana 47(4)(2018): 805-810

http://dx.doi.org/10.17576/jsm-2018-4704-20

 

Penilaian Semula Pengukuran Kuantitatif Stereometri terhadap Pertumbuhan Sebatian antara Logam bagi Sambungan Pateri

(Reassessment of Stereometric Quantitative Measurements on the Growth of Intermetallic Compound for Solder Connections)

 

MARIA ABU BAKAR, AZMAN JALAR* & ROSLINA ISMAIL

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 29 August 2017/Accepted: 10 November 2017

 

ABSTRAK

 

Pencerapan dua dimensi (2D) yang diperoleh daripada keratan rentas sampel selalunya digunakan untuk mendapatkan maklumat ketebalan lapisan sebatian antara logam (IMC). Walau bagaimanapun, pencerapan 2D amatlah terhad berbanding maklumat yang sepatutnya diperoleh daripada struktur tiga dimensi (3D) sampel. Kajian ini bertujuan untuk menilai semula kaedah pengukuran lapisan IMC daripada pemerhatian 2D dengan mempertimbangkan faktor-faktor sebenar dalam bentuk 3D IMC. Nilai mod ketebalan didapati lebih mewakili nilai ketebalan IMC setelah mempertimbangkan pelbagai faktor stereometri berbanding dengan nilai purata. Ini memberikan suatu penanda aras dalam aktiviti menentukan ketebalan lapisan IMC berdasarkan pencerapan 2D daripada struktur 3D.

 

Kata kunci: Ketebalan pertumbuhan sebatian antara logam; metalografi kuantitatif; pertumbuhan sebatian antara logam; stereologi

 

ABSTRACT

 

Two-dimensional observation (2D) obtained from cross-section of the sample is often used to obtain the intermetallic compound (IMC) thickness. However, 2D observation is limited compared to the information that should be obtained from a three-dimensional (3D) sample structure. This study aimed to re-evaluate the IMC layer measurement method from 2D observation by considering real factors in the form of 3D IMC. Thickness mode values are more represent the IMC’s thickness value by considering various stereometric factors as compared to average values. This provides a benchmark in the activity of determining the IMC layer thickness based on 2D’s observation from the 3D structure.

 

Keywords: Intermetallic compound growth; intermetallic compound thickness; quantitative metallography; stereology

 

REFERENCES

Alam, M.O. & Chan, Y.C.  2005. Solid-state growth kinetics  of Ni3Sn4 at the Sn-3.5Ag solder/Ni interface. Journal of Applied Physics 98: 123527.

An, T. & Qin, F. 2014. Effects of the intermetallic compound microstructure on the tensile behavior of Sn3.0Ag0.5Cu/ Cu solder joint under various strain rates. Microelectronics Reliability 54: 932-938.

Bakar, M.A., Jalar, A., Daud, A.R., Ismail, R., Lah, N.C.A. & Ibrahim, N.S. 2016. Nanoindentation approach on investigating micromechanical properties of joining from green solder materials. Sains Malaysiana 45(8): 1275-1279.

Bertheau, J., Hodaj, F., Hotellier, N. & Charbonnier, J. 2014. Effect of intermetallic compound thickness on shear strength of 25 mm diameter Cu-pillars. Intermetallics 51: 37-47.

Day, A.P. & Quested, T.E. 1999. A comparison of grain imaging and measurement using horizontal orientation and colour orientation contrast imaging, electron backscatter pattern and optical methods. Journal of Microscopy 195(3): 186- 196.

Feng, J. & Songbai, X. 2013. Growth behaviors of intermetallic compound layers in Cu/Al joints brazed with Zn–22Al and Zn–22Al–0.05Ce filler metals. Materials and Design 51: 907-915.

Gancarz, T. & Pstrus, J. 2015. Formation and growth of intermetallic phases at the interface in the Cu/Sn-Zn-Ag- Cu/Cu joints. Journal of Alloys and Compounds 647: 844-856.

Hang, C.J., Wang, C.Q., Mayer, M., Tian, Y.H., Zhou, Y. & Wang, H.H. 2008. Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectronics Reliability 48: 416-424.

Kammerer, C.C., Behdad, S., Zhou, L., Betancor, F., Gonzalez, M., Boesl, B. & Sohn, Y.H. 2015. Diffusion kinetics, mechanical properties, and crystallographic characterization of intermetallic compounds in the Mg-Zn binary system. Intermetallics 67: 145-155.

Kanlayasiri, K. & Sukpimai, K. 2016. Effects of indium on the intermetallic layer between low-Ag SAC0307- xIn lead-free solders and Cu substrate. Journal of Alloys and Compounds 668: 169-175.

Lindqvist, J.E. & Akesson, U. 2001. Image analysis applied to engineering geology, a literature review. Bull. Eng. Geol. Env. 60: 117-122.

Pabst, W., Gregorova, E. & Uhlirova, T. 2015. Microstructure characterization via stereological relations - A shortcut for beginners. Materials Characterization 105: 1-12.

Nishikawa, H. & Iwata, N. 2015. Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn-Ag Cu solder on a Cu Pad. Journal of Materials Processing Technology 215: 6-11.

Uhlirova, T., Pabst, W., Gregorova, E. & Hostasa, J. 2016. Stereology of dense polycrystalline materials - from interface density and mean curvature integral density  to Rayleigh distributions of grain sizes. Journal of the  European Ceramic Society 36: 2319-2328.

Voort, G.F.V. 1999. Metallography Principles and Practice. ASM International. Lake Bluff, Illinois.

Yao, Y., Zhou, J., Xue, F. & Chen, X. 2016. Interfacial structure and growth kinetics of intermetallic compounds between Sn-3.5Ag solder and Al substrate during solder process. Journal of Alloys and Compounds 682: 627-633.

Yoon, J.W., Kim, S.W. & Jung, S.B. 2005. Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. Journal of Alloys and Compounds 391: 82-89.

Zhao, J., Yang, P., Zhu, F. & Cheng, C.Q. 2006. The effect of high magnetic field on the growth behaviour of Sn-3Ag-0.5Cu/ Cu IMC layer. Scripta Materialia 54: 1077-1080.

Zou, H., Zhu, Q. & Zhang, Z. 2008. Growth kinetics of intermetallic compounds and tensile properties of Sn-Ag- Cu/Ag single crystal joint. Journal of Alloys and Compounds 461: 410-417.

 

*Corresponding author; email: azmn@ukm.edu.my

 

previous