Sains Malaysiana 47(4)(2018): 819-827
http://dx.doi.org/10.17576/jsm-2018-4704-22
Pengaruh Suhu Sinteran terhadap
Kebioaktifan Wolastonit daripada Abu Sekam Padi dan Batu Kapur
(Influence of Sintering Temperature on the Bioactivity of
Wollastonite Derived from Rice Husk Ash and Limestone)
FARAH ATIQAH ABDUL
AZAM1, HAMISAH ISMAIL1, ROSLINDA SHAMSUDIN1*,
MIN HWEI NG2, ZALITA ZAINUDDIN1 & MUHAMMAD AZMI ABDUL
HAMID1
1Pusat Pengajian Fizik Gunaan, Fakulti Sains &
Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Pusat Kejuruteraan Tisu Tingkat 12, Blok Klinikal, Pusat Perubatan Universiti Kebangsaan Malaysia,
56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia
Received:
18 September 2017/Accepted:
7 November 2017
ABSTRAK
Tujuan
kajian ini adalah untuk mengenal pasti kesan rawatan suhu yang berbeza terhadap
kebioaktifan wolastonit yang disintesis menggunakan teknik sol gel. Abu sekam
padi dan batu kapur digunakan sebagai bahan awalan untuk menghasilkan
wolastonit. Nisbah campuran kalsium oksida dan silika dioksida CaO/SiO2 ditentukan pada 55:45 dan dimasukkan ke dalam autoklaf pada suhu 135°C dengan
tekanan 0.26 MPa selama 8 jam. Campuran serbuk CaO dan SiO2 tersebut
disinter pada suhu yang berbeza (1150°C dan
1250°C) dan diuji sifat kebioaktifan secara rendaman dalam larutan cecair badan
tersimulasi (SBF) selama 1,3,5,7 dan 14 hari secara in vitro. Sifat fizikal dan
kebioaktifan wolastonit sebelum dan selepas direndam dalam larutan SBF dan
beberapa pencirian telah dijalankan menggunakan teknik analisis XRD, FESEM, EDX
dan FTIR. Campuran serbuk CaO-SiO2 yang telah diautoklaf dan
disinter pada suhu 1250°C menghasilkan puncak tunggal pseudowolastonit. Ujian
kebioaktifan menunjukkan lapisan amorfus kalsium fosfat (ACP) dengan julat nisbah Ca/P 1.9-1.51 terbentuk lebih pantas pada sampel wolastonit yang disinter pada suhu
1250°C berbanding pembentukan ACP pada sampel tersinter 1150°C.
Kata kunci: Abu sekam padi; batu kapur; kebioaktifan;
wolastonit
ABSTRACT
The aim of this work was to identify the sintering effect on the in-vitro bioactivity of the synthesized wollastonite material
using sol gel method. Rice husk ash and calcium oxide from limestone were taken as a precursor to produce wollastonite. Calcium oxide and silicon
dioxide CaO/SiO2 were measured at an average ratio of 55:45 and
placed in an autoclave at the temperature of 135°C with 0.26 MPa pressure for 8 h. The CaO and SiO2 powder mixtures have been sintered at different temperatures (1150°C and
1250°C) and then immersed in a simulated body liquid (SBF) solution for 1,3,5,7
and 14 days for in vitro bioactivity test. The physical properties and
wolastonite bioactivity before and after immersed in SBF solution and some
characterizations were carried out using XRD, FESEM, EDX and FTIR analysis
techniques. The autoclaved CaO-SiO2 powder mixture sintered at
1250°C yields a single peak of pseudowolastonite. The bioactivity test showed that, the amorphous layer of calcium phosphate (ACP) with the Ca/P ratio of 1.9-2.01 was formed faster on wolastonite samples sintered at 1250°C compared to the formation of
ACP layer for sample sintered at 1150°C.
Keywords: Bioactivity; limestone; rice husk
ash; wollastonite
REFERENCES
Anjaneyulu, U. & Sasikumar, S. 2014. Bioactive nanocrystalline wollastonite synthesized by sol - gel combustion. Materials Science 37(2): 207-212.
ASTM F1538-03. 2012. Standard Specification for Glass and Glass Ceramic Biomaterials for Implantation (Reapproved 2011). pp. 1-4.
Best,
S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008. Bioceramics: Past, present and for the future. Journal of the
European Ceramic Society 28(7): 1319-1327.
Brohede, U., Zhao, S., Lindberg, F., Mihranyan, A., Forsgren, J., Strømme, M. & Engqvist, H. 2009. A novel graded bioactive high adhesion implant coating. Applied Surface Science 255(17): 7723-7728.
Chen, C.C., Ho, C.C., Lin, S.Y. & Ding, S.J. 2015. Green synthesis of calcium silicate bioceramic powders. Ceramics
International 41(4): 5445-5453.
De Aza, P.N., Guitián, F., De Aza, S. & Valle, F.J. 1998. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. The Analyst 123(4):
681-685.
De La Casa-Lillo, M.A.,
Velásquez, P. & De Aza, P.N. 2011. Influence of thermal treatment on the “in vitro” bioactivity
of wollastonite materials. Journal of
Materials Science: Materials in Medicine 22(4): 907-915.
Dorozhkin, S.V. 2009. Calcium
orthophosphates in nature, biology and medicine. Materials 2(2): 399-498.
Harabi, A. & Chehlatt, S.
2013. Preparation process of a highly
resistant wollastonite bioceramics using local raw materials. Journal of Thermal Analysis and Calorimetry 111(1): 203-211.
Hassan, J.U., Noh, M.Z. &
Ahmad, Z.A. 2012. Chemical and mineralogical properties of rice husk ash (RHA). Jurnal Teknologi Pertanian 8(1): 1-3.
Imam, S.H., Bilbao-Sainz, C., Chiou, B.S., Glenn, G.M.
& Orts, W.J. 2013. Biobased adhesives, gums, emulsions, and binders:
Current trends and future prospects. Journal
of Adhesion Science and Technology 27(18-19): 1972-1997.
Ismail, H., Shamsudin, R. & Hamid,
M.A.A. 2016a. Effect of autoclaving and sintering on the formation of β-wollastonite. Materials Science and Engineering C 58: 1077-1081.
Ismail, H., Shamsudin, R., Hamid, M.A.A. & Awang, R. 2016b. Mechanism of apatite formation on
β-wollastonite sample surface synthesized from rice husk ash. Sains Malaysiana 45(12): 1779-1785.
Jones, F.H. 2001. Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surface Science Reports 42: 75-205.
Kokubo, T. & Takadama, H.
2006. How useful is SBF in predicting in
vivo bone bioactivity? Biomaterials 27(15):
2907-2915.
Lakshmi, R. & Sasikumar, S.
2012. Synthesis, characterization and bioactivity studies of calcium silicate
bioceramics. Advanced Materials Research 584:
479-483.
Lim, P.N., Chang, L. & Thian,
E.S. 2015. Development of nanosized silver-substituted apatite for biomedical applications: A review. Nanomedicine:
Nanotechnology, Biology, and Medicine 11(6): 1331-1344.
Mami, M., Lucas-Girot, A.,
Oudadesse, H., Dorbez-Sridi, R., Mezahi, F. & Dietrich, E. 2008. Investigation of the surface reactivity of a sol-gel derived
glass in the ternary system SiO2-CaO-P2O5. Applied Surface Science 254(22): 7386-7393.
Meiszterics, A. & Sinkó, K. 2008. Sol-gel derived calcium silicate ceramics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 319(1-3): 143-148.
Mour, M., Das, D., Winkler, T., Hoenig, E., Mielke, G., Morlock, M.M. & Schilling, A.F. 2010. Advances in porous biomaterials for dental and orthopaedic applications. Materials 3(5): 2947-2974.
Mozafari, M., Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass
in simulated body fluid. Journal of
Non-Crystalline Solids 356(28-30): 1470-1478.
Podporska, J., Błażewicz, M., Trybalska, B. & Zych, Ł. 2008. A novel ceramic material with medical application. Processing and Application of Ceramics 2(1): 19-22.
Rashid, R.A., Shamsudin, R., Hamid, M.A.A. & Jalar, A. 2014. Low temperature production of wollastonite from limestone and silica sand through solid-state
reaction. Ceramics International 40(5): 6847-6853.
Shamsudin, R., Ismail, H. &
Hamid, M.A.A. 2016. The suitability of rice straw ash as a precursor for
synthesizing β-wollastonite. Materials Science Forum 846: 216-222.
Toledo-Fernández, J.A.,
Mendoza-Serna, R., Morales, V., de la
Rosa-Fox, N., Piñero, M., Santos, A. & Esquivias, L. 2008. Bioactivity
of wollastonite/aerogels composites obtained from a TEOS-MTES matrix. Journal of Materials Science: Materials in Medicine 19(5): 2207-2213.
Vallet-Regí, M. 2010. Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie 13: 174-185.
Zhao, W. & Chang, J. 2004. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Materials Letters 58(19):
2350-2353.
*Corresponding author; email: linda@ukm.edu.my