Sains Malaysiana 47(5)(2018): 1025–1031

http://dx.doi.org/10.17576/jsm-2018-4705-19

 

Preparation and Characterization of Macroporous Bioactive Glass Ceramic Made via Sol-Gel Route and Powder Sintering Method

(Penyediaan dan Pencirian Seramik Kaca Bioaktif Bermakroliang Dibuat Melalui Laluan Sol-Gel dan Kaedah Sinteran Serbuk)

 

SYED NUZUL FADZLI SYED ADAM1*, ROSLINDA SHAMSUDIN1, SITI ROHANI ZAINUDDIN2, BANJURAIZAH JOHAR2 & FIRUZ ZAINUDDIN2

 

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Received: 15 September 2017/Accepted: 20 November 2017

 

ABSTRACT

The purpose of this study was to prepare macroporous glass ceramic scaffold by sol-gel glass synthesis and powder sintering method. Sodium nitrate was added during sol-gel process to obtain glass ceramic with mol composition of 42.11% SiO2 - 18.42% CaO - 29.82% Na2O - 9.65% P2O5. The glass particles were found to be thermally stable above 900°C as indicated by TGA/DTA analysis. The dried glass particles obtained from sol-gel process were compacted and sintered at 1000°C for 3 h soaking time. Sintering crystallized the glass by 71.5% of crystallinity with tetracalcium catena-hexaphosphate (V) (Ca4(P6O19) as the main crystalline phase as revealed by XRD analysis. Although glass crystallized during sintering, it showed a good in vitro bioactivity as apatite-like layer were deposited on the glass ceramic surface when immersed in simulated body fluid (SBF) for 14 days. SEM analysis proved the macroporous structure formation with pore size ranges between 30 and 350 μm due to foaming effect which occurred during sintering. Besides that, the glass ceramic surface formed into vitrified-like due to fluxing effect during sintering thus affected the porosity and densification measurement done by Archimedes test. In conclusion, the presence of sodium oxide in sol-gel glass ceramic composition by 29.82 mol % with sintering temperature at 1000°C is able to produce bioactive and macroporous glass ceramic that potentially be used as medical scaffold material.

 

Keywords: Glass ceramic; macroporous; powder sintering; scaffold; sol-gel

 

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk menyediakan perancah seramik kaca berkeliangan makro melalui kaedah sintesis sol-gel dan sinteran serbuk. Natrium nitrat telah ditambahkan semasa proses sol-gel untuk menghasilkan seramik kaca dengan komposisi mol iaitu 42.11% SiO2 - 18.42% CaO - 29.82% Na2O - 9.65% P2O5. Partikel kaca didapati stabil secara terma pada suhu melebihi 900ºC seperti yang ditunjukkan oleh analisis TGA/DTA. Partikel kaca kering yang diperoleh daripada proses sol-gel dipadatkan dan disinter pada suhu 1000ºC selama 3 jam. Sinteran menghablurkan kaca sebanyak 71.5% kehabluran dengan tetrakalsium katena-heksafosfat (V) (Ca4(P6O19) sebagai fasa berhablur utama seperti yang ditunjukkan oleh analisis XRD. Walaupun kaca menghablur semasa sinteran, sampel masih menunjukkan kebioaktifanin vitro yang baik disebabkan lapisan seakan apatit termendap di atas permukaan seramik kaca selepas direndam dalam larutan bendalir badan simulasi (SBF) selama 14 hari. Analisis SEM membuktikan pembentukan struktur bermakroliang dengan julat saiz liang antara 30 ke 350 μm disebabkan oleh kesan pembusaan yang berlaku semasa sinteran. Selain itu, permukaan seramik kaca membentuk seakan kekaca disebabkan oleh kesan fluks semasa sinteran sekaligus menjejaskan pengukuran keliangan dan pemadatan melalui ujian Archimedes. Kesimpulannya, kehadiran komponen natrium oksida dalam komposisi seramik kaca sol-gel sebanyak 29.82% mol dengan suhu sinteran pada 1000°C dapat menghasilkan seramik kaca bioaktif dan bermakroliang yang berpotensi untuk digunakan sebagai bahan perancah perubatan.

 

Kata kunci: Bermakroliang; perancah; seramik kaca; sinteran serbuk; sol-gel

REFERENCES

Araújo, M., Miola, M., Baldi, G., Perez, J. & Verné, E. 2016. Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials 226(9): 1-15.

Bellucci, D., Cannillo, V. & Sola, A. 2010. An overview of the effects of thermal processing on bioactive glasses. Science of Sintering 42(3): 307-320.

Bizari, D., Rabiee, M., Moztarzadeh, F., Tahriri, M., Alavi, S.H. & Masaeli, R. 2013. Synthesis, characterization and biological evaluation of sol-gel derived nanomaterial in the ternary system 64% SiO2-31% CaO-5% P2O5 as a bioactive glass: In vitro study. Ceramics - Silikaty57 (3): 201-209.

Brink, M., Turunen, T., Happonen, R.P. & Yli-Urpo, A. 1997. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. Journal of Biomedical Materials Research 37(1): 114-121.

Chen, Q.Z., Li, Y., Jin, L.Y., Quinn, J.M.W. & Komesaroff, P.A. 2010. A new sol - gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomaterialia 6: 4143-4153.

Chen, Q.Z. & Boccaccini, A.R. 2006. Coupling mechanical competence and bioresorbability in bioglass ® -derived tissue engineering scaffolds. Advanced Engineering Materials 8(4): 285-289.

Chen, Q.Z., Thompson, I.D. & Boccaccini, A.R. 2006. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11): 2414-2425.

Delben, J.R.J., Pereira, K., Oliveira, S.L., Alencar, L.D.S., Hernandes, A.C. & Delben, A.A.S.T. 2013. Bioactive glass prepared by sol-gel emulsion. Journal of Non-Crystalline Solids 361: 119-123.

Duée, C., Désanglois, F., Lebecq, I., Moreau, G., Leriche, A. & Follet-Houttemane, C. 2007. Mixture designs applied to glass bioactivity evaluation in the Si-Ca-Na system. Journal of Non Crystalline Solids 355(16-17): 943-950.

Esfehani, F., Baghshaei, S. & Ghader, A.A.B. 2013. The effects of CaO/P2O5 molar ratio changes on in vitro bioactivity of nanopowder glass via sol-gel in SiO2-CaO-P2O5 system. Basic and Applied Scientific Research 3(1s): 375-382.

Guarino, V., Causa, F. & Ambrosio, L. 2007. Bioactive scaffolds for bone and ligament tissue. Expert Review of Medical Devices 4(3): 405-418.

Izadi, S., Hesaraki, S. & Ardakani, M.H. 2014. Evaluation nanostructure properties of bioactive glass scaffolds for bone tissue engineering. Advanced Materials Research 829: 289-293.

Izquierdo, B., Isabel, A. & Salinas, J. 1999. In vitro calcium phosphate layer formation on sol-gel glasses of the system CaO-SiO2. Biomedical Materials Research 4636: 243-250.

Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V. & Newport, R.J. 2010. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Engineering in Medicine 224: 1373-1387.

Jones, J.R. 2009. New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society 29: 1275-1281.

Jones, J.R., Ehrenfried, L.M. & Hench, L.L. 2006. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27: 964-973.

Kamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R., Moztarzadeh, Z., Tahmasbi, M. & Mozafari, M. 2012. Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceramics - Silikaty 56(4): 331-340.

Karageorgiou, V. & Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474-5491.

Liu, J. & Miao, X. 2004. Sol-gel derived bioglass as a coating material for porous alumina scaffolds. Ceramics International 30: 1781-1785.

Liu, X., Rahaman, M.N. & Fu, Q. 2013a. Bone regeneration in strong porous bioactive glass scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomaterialia9(1): 4889-4898.

Liu, X., Rahaman, M.N., Hilmas, G.E. & Bala, B.S. 2013b. Mechanical properties of bioactive glass scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomaterialia9(6): 7025-7034.

Mami, M., Lucas-Girot, A., Oudadesse, H. & Dorbez-Sridi, R. 2008. Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2CaO–P2O5. Applied Surface Science 254: 7386-7393.

Mehdikhani, B. & Borhani, G.H. 2013. Crystallization behavior and microstructure of bio glass-ceramic system. International Letters of Chemistry 14: 58-68.

Mozafari, M., Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2CaO–P2O5 glass in simulated body fluid. Non Crystalline Solids 356(28): 1470-1478.

Mukundan, L.M., Nirmal, R., Vaikkath, D. & Nair, P.D. 2013. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing. A preliminary study. Biomatter 3: 1-10.

Nandi, S.K., Kundu, B. & Datta, S. 2011. Development and applications of varieties of bioactive glass compositions in dental surgery, third generation tissue engineering, orthopaedic surgery and as drug delivery system. In Biomaterials Applications for Nanomedicine, edited by Pignatello, R. Croatia: Intech. Chapter 4. pp. 69-116.

Rezwan, K., Chen, Q.Z., Blaker, J.J. & Roberto, A. 2006. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413-3431.

Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M. & Karimi, M. 2009. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Materials Science and Engineering C 29(1): 335-340.

Sabree, I., Gough, J.E. & Derby, B. 2015. Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions. Ceramics International 41: 8425-8432.

Saravanapavan, P. & Hench, L.L. 2003. Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids 318: 1-13.

Saravanapavan, P., Jones, J.R., Pryce, R.S. & Hench, L.L. 2003. Bioactivity of gel–glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). Journal of Biomedical Materials Research Part A 66(1): 110-119.

Shu, C., Wenjuan, Z., Xu, G., Wei, Z., Wei, J. & Dongmei, W. 2010. Dissolution behavior and bioactivity study of glass ceramic scaffolds in the system of CaO–P2O5–Na2O–ZnO prepared by sol-gel technique. Materials Science and Engineering C 30: 105-111.

Siqueira, R.L., Peitl, O. & Zanotto, E.D. 2011. Gel-derived SiO2CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity. Materials Science and Engineering C 31: 983-991.

Stábile, F.M., Martinez Stagnaro, S.Y., Ortiga, J. & Volzone, C. 2015. Production of porous scaffolds from bioglass 45S5- derived glasses. Procedia Materials Science 9: 558-562.

Wachi, S. & Jones, A.G. 1992. Dynamic modelling of particle size distribution and degree of agglomeration during precipitation. Chemical Engineering Science 47(12): 3145-3148.

Wu, Z.Y., Hill, R.G. & Jones, J.R. 2011. Optimizing the processing of porous melt-derived bioactive glass scaffolds. Bioceramics Development and Applications 1: 2-5.

 

 

*Corresponding author; email: syed.nuzul@unimap.edu.my

 

 

 

previous