Sains Malaysiana 47(5)(2018):
1025–1031
http://dx.doi.org/10.17576/jsm-2018-4705-19
Preparation and
Characterization of Macroporous Bioactive Glass
Ceramic Made via Sol-Gel Route and Powder Sintering Method
(Penyediaan
dan Pencirian
Seramik Kaca Bioaktif
Bermakroliang Dibuat Melalui Laluan Sol-Gel dan Kaedah Sinteran Serbuk)
SYED NUZUL FADZLI SYED ADAM1*, ROSLINDA SHAMSUDIN1, SITI ROHANI ZAINUDDIN2, BANJURAIZAH JOHAR2 & FIRUZ ZAINUDDIN2
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2School of Materials
Engineering, Universiti Malaysia Perlis, 02600 Arau,
Perlis Indera Kayangan, Malaysia
Received: 15 September
2017/Accepted: 20 November 2017
ABSTRACT
The purpose of this
study was to prepare macroporous glass ceramic
scaffold by sol-gel glass synthesis and powder sintering method. Sodium nitrate
was added during sol-gel process to obtain glass ceramic with mol composition of 42.11% SiO2 -
18.42% CaO - 29.82% Na2O -
9.65% P2O5. The glass particles
were found to be thermally stable above 900°C as indicated by TGA/DTA analysis.
The dried glass particles obtained from sol-gel process were compacted and
sintered at 1000°C for 3 h soaking time. Sintering crystallized the glass by
71.5% of crystallinity with tetracalcium catena-hexaphosphate (V) (Ca4(P6O19)
as the main crystalline phase as revealed by XRD analysis.
Although glass crystallized during sintering, it showed a good in vitro bioactivity as apatite-like layer were deposited on
the glass ceramic surface when immersed in simulated body fluid (SBF)
for 14 days. SEM analysis proved the macroporous structure formation with pore size ranges between 30 and 350 μm due to foaming effect which occurred during
sintering. Besides that, the glass ceramic surface formed into vitrified-like
due to fluxing effect during sintering thus affected the porosity and
densification measurement done by Archimedes test. In conclusion, the presence
of sodium oxide in sol-gel glass ceramic composition by 29.82 mol % with sintering temperature at 1000°C is able to
produce bioactive and macroporous glass ceramic that
potentially be used as medical scaffold material.
Keywords: Glass
ceramic; macroporous; powder sintering; scaffold;
sol-gel
ABSTRAK
Tujuan kajian ini
dijalankan adalah untuk menyediakan perancah seramik kaca berkeliangan makro melalui kaedah
sintesis sol-gel dan
sinteran serbuk. Natrium nitrat telah ditambahkan
semasa proses sol-gel untuk
menghasilkan seramik
kaca dengan komposisi
mol iaitu
42.11% SiO2
- 18.42% CaO - 29.82%
Na2O
- 9.65% P2O5. Partikel
kaca didapati
stabil secara terma
pada suhu
melebihi 900ºC seperti
yang ditunjukkan oleh analisis TGA/DTA. Partikel
kaca kering
yang diperoleh daripada proses sol-gel
dipadatkan dan
disinter pada suhu 1000ºC selama 3 jam. Sinteran menghablurkan kaca sebanyak 71.5% kehabluran dengan tetrakalsium katena-heksafosfat (V) (Ca4(P6O19)
sebagai fasa
berhablur utama seperti yang ditunjukkan oleh analisis XRD.
Walaupun kaca menghablur
semasa sinteran,
sampel masih menunjukkan
kebioaktifanin
vitro yang baik disebabkan
lapisan seakan
apatit termendap di atas permukaan seramik kaca selepas
direndam dalam
larutan bendalir badan simulasi (SBF)
selama 14 hari. Analisis SEM membuktikan
pembentukan struktur
bermakroliang dengan julat saiz
liang antara
30 ke 350 μm disebabkan oleh kesan pembusaan yang berlaku semasa sinteran. Selain itu, permukaan seramik kaca membentuk
seakan kekaca
disebabkan oleh kesan fluks semasa
sinteran sekaligus
menjejaskan pengukuran keliangan dan pemadatan
melalui ujian
Archimedes. Kesimpulannya, kehadiran komponen natrium oksida dalam komposisi
seramik kaca
sol-gel sebanyak 29.82% mol dengan suhu sinteran
pada 1000°C dapat
menghasilkan seramik kaca bioaktif dan
bermakroliang yang berpotensi untuk digunakan sebagai bahan perancah perubatan.
Kata kunci: Bermakroliang;
perancah; seramik kaca; sinteran
serbuk; sol-gel
REFERENCES
Araújo, M., Miola,
M., Baldi, G., Perez, J. & Verné,
E. 2016. Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials 226(9): 1-15.
Bellucci, D., Cannillo,
V. & Sola, A. 2010. An overview of the effects of thermal processing on
bioactive glasses. Science of Sintering 42(3): 307-320.
Bizari, D., Rabiee,
M., Moztarzadeh, F., Tahriri,
M., Alavi, S.H. & Masaeli,
R. 2013. Synthesis, characterization and biological evaluation of sol-gel
derived nanomaterial in the ternary system 64% SiO2-31%
CaO-5% P2O5 as a bioactive glass: In vitro study. Ceramics - Silikaty57 (3): 201-209.
Brink, M., Turunen, T., Happonen, R.P. & Yli-Urpo, A.
1997. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. Journal of Biomedical Materials Research 37(1): 114-121.
Chen, Q.Z., Li, Y., Jin, L.Y., Quinn,
J.M.W. & Komesaroff, P.A. 2010. A new sol - gel
process for producing Na2O-containing bioactive glass
ceramics. Acta Biomaterialia 6: 4143-4153.
Chen, Q.Z. & Boccaccini, A.R. 2006.
Coupling mechanical competence and bioresorbability in bioglass ® -derived tissue engineering scaffolds. Advanced
Engineering Materials 8(4): 285-289.
Chen, Q.Z., Thompson, I.D. & Boccaccini,
A.R. 2006. 45S5 Bioglass-derived glass-ceramic
scaffolds for bone tissue engineering. Biomaterials 27(11): 2414-2425.
Delben, J.R.J., Pereira, K.,
Oliveira, S.L., Alencar, L.D.S., Hernandes,
A.C. & Delben, A.A.S.T. 2013. Bioactive glass
prepared by sol-gel emulsion. Journal of Non-Crystalline Solids 361:
119-123.
Duée, C., Désanglois,
F., Lebecq, I., Moreau, G., Leriche,
A. & Follet-Houttemane, C. 2007. Mixture designs
applied to glass bioactivity evaluation in the Si-Ca-Na system. Journal of
Non Crystalline Solids 355(16-17): 943-950.
Esfehani, F., Baghshaei,
S. & Ghader, A.A.B. 2013. The effects of CaO/P2O5 molar
ratio changes on in vitro bioactivity of nanopowder glass via sol-gel in SiO2-CaO-P2O5 system. Basic and Applied Scientific Research 3(1s): 375-382.
Guarino, V., Causa, F. & Ambrosio, L. 2007. Bioactive scaffolds for bone and
ligament tissue. Expert Review of Medical Devices 4(3): 405-418.
Izadi, S., Hesaraki, S. & Ardakani, M.H. 2014. Evaluation nanostructure properties of
bioactive glass scaffolds for bone tissue engineering. Advanced Materials
Research 829: 289-293.
Izquierdo, B., Isabel, A. &
Salinas, J. 1999. In vitro calcium phosphate layer formation on sol-gel
glasses of the system CaO-SiO2. Biomedical
Materials Research 4636: 243-250.
Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V. &
Newport, R.J. 2010. Bioactive glass scaffolds for bone regeneration and their
hierarchical characterisation. Engineering in
Medicine 224: 1373-1387.
Jones, J.R. 2009. New trends in bioactive scaffolds: The
importance of nanostructure. Journal of the European Ceramic Society 29:
1275-1281.
Jones, J.R., Ehrenfried, L.M. &
Hench, L.L. 2006. Optimising bioactive glass
scaffolds for bone tissue engineering. Biomaterials 27: 964-973.
Kamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R., Moztarzadeh,
Z., Tahmasbi, M. & Mozafari,
M. 2012. Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceramics - Silikaty 56(4): 331-340.
Karageorgiou, V. & Kaplan, D.
2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:
5474-5491.
Liu, J. & Miao, X.
2004. Sol-gel derived bioglass as a coating material
for porous alumina scaffolds. Ceramics International 30: 1781-1785.
Liu, X., Rahaman, M.N. & Fu, Q. 2013a. Bone regeneration in
strong porous bioactive glass scaffolds with an oriented microstructure
implanted in rat calvarial defects. Acta Biomaterialia9(1):
4889-4898.
Liu, X., Rahaman, M.N., Hilmas, G.E. & Bala, B.S. 2013b. Mechanical properties of bioactive
glass scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomaterialia9(6):
7025-7034.
Mami, M., Lucas-Girot, A., Oudadesse, H. & Dorbez-Sridi, R. 2008. Investigation of the surface
reactivity of a sol-gel derived glass in the ternary system SiO2–CaO–P2O5. Applied Surface Science 254:
7386-7393.
Mehdikhani, B. & Borhani, G.H. 2013. Crystallization behavior and
microstructure of bio glass-ceramic system. International Letters of
Chemistry 14: 58-68.
Mozafari, M., Moztarzadeh, F. & Tahriri, M.
2010. Investigation of the physico-chemical reactivity
of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. Non Crystalline Solids 356(28):
1470-1478.
Mukundan, L.M., Nirmal, R., Vaikkath, D. &
Nair, P.D. 2013. A new synthesis route to high surface area sol gel bioactive
glass through alcohol washing. A preliminary study. Biomatter 3: 1-10.
Nandi, S.K., Kundu, B. & Datta, S. 2011.
Development and applications of varieties of bioactive glass compositions in
dental surgery, third generation tissue engineering, orthopaedic surgery and as drug delivery system. In Biomaterials Applications for
Nanomedicine, edited by Pignatello, R. Croatia:
Intech. Chapter 4. pp. 69-116.
Rezwan, K., Chen, Q.Z., Blaker, J.J. & Roberto, A. 2006. Biodegradable and
bioactive porous polymer/inorganic composite scaffolds for bone tissue
engineering. Biomaterials 27: 3413-3431.
Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M. & Karimi, M. 2009. Synthesis, characterization and in
vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Materials Science and Engineering C 29(1):
335-340.
Sabree, I., Gough, J.E.
& Derby, B. 2015. Mechanical properties of porous ceramic scaffolds:
Influence of internal dimensions. Ceramics International 41: 8425-8432.
Saravanapavan, P. & Hench, L.L.
2003. Mesoporous calcium silicate glasses. I. Synthesis. Journal of
Non-Crystalline Solids 318: 1-13.
Saravanapavan, P., Jones, J.R.,
Pryce, R.S. & Hench, L.L. 2003. Bioactivity of gel–glass powders in the
CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2)
and quaternary glasses (SiO2-CaO-P2O5-Na2O). Journal of Biomedical Materials Research Part A 66(1): 110-119.
Shu, C., Wenjuan, Z., Xu, G., Wei, Z., Wei, J. & Dongmei, W. 2010. Dissolution behavior and bioactivity
study of glass ceramic scaffolds in the system of CaO–P2O5–Na2O–ZnO prepared by sol-gel technique. Materials Science and
Engineering C 30: 105-111.
Siqueira, R.L., Peitl, O. & Zanotto, E.D.
2011. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity. Materials
Science and Engineering C 31: 983-991.
Stábile, F.M., Martinez Stagnaro, S.Y., Ortiga, J. & Volzone, C. 2015. Production of porous scaffolds from bioglass 45S5- derived glasses. Procedia Materials
Science 9: 558-562.
Wachi, S. & Jones, A.G.
1992. Dynamic modelling of particle size distribution and degree of
agglomeration during precipitation. Chemical Engineering Science 47(12):
3145-3148.
Wu, Z.Y., Hill, R.G.
& Jones, J.R. 2011. Optimizing the processing of porous melt-derived
bioactive glass scaffolds. Bioceramics Development and Applications 1: 2-5.
*Corresponding
author; email: syed.nuzul@unimap.edu.my