Sains Malaysiana 47(5)(2018): 1039–1043

http://dx.doi.org/10.17576/jsm-2018-4705-21

 

Pengoptimuman Parameter Sonikasi dan Pengacauan Magnetik bagi Mendapatkan Penyerakan Sebati Komposit Kuprum-Grafin Berdasarkan Sifat Morfologi

(Optimization of Sonication and Magnetic Stirrer Parameter for Copper-Graphene Composite's Homogeneous Dispersion from Morphological Properties)

 

NOR NABILLA KADIMAN, JULIE ELVYANA ROMLI, NORHAMIDI MUHAMAD, ABU BAKAR SULONG & FARHANA MOHD FOUDZI

 

Jabatan Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 7 November 2017/Accepted: 9 December 2017

 

 

ABSTRAK

Kajian mengenai grafin kini semakin meluas disebabkan sifat kebolehaliran terma yang mampu meningkatkan potensi bahan komposit. Penambahan grafin dalam matriks kuprum dikaji dengan menggunakan gabungan bahan pengikat iaitu polietilena glikol (PEG), polimetil metakrilat (PMMA) dan asid stearik. Penggunaan grafin sebagai bahan pengisi dalam matriks kuprum merupakan pendekatan baru yang bertujuan untuk meningkatkan kebolehaliran terma produk yang dihasilkan. Namun, penambahan grafin dalam matriks kuprum boleh menyebabkan ketidaksamarataan zarah komposit kerana penggumpalan zarah-zarah grafin. Oleh itu, kaedah sonikasi dan pengacauan magnetik semasa proses pra-campuran digunakan bagi menghasilkan bahan suapan yang sebati dan penyerakan grafin yang lebih baik tanpa penggumpalan. Suhu proses sonikasi telah ditetapkan pada 55˚C dengan masa sonikasi yang berbeza iaitu 30 minit, 60 minit dan 90 minit. Bagi proses pengacauan magnetik, parameter yang digunakan adalah 55˚C, selama 21 jam pada kelajuan yang berbeza iaitu 300, 350 dan 400 rpm. Analisis imej Pancaran Medan Mikroskopi Elektron Pengimbasan (FESEM) dan Pemetaan EDX telah dijalankan bagi mengkaji penyerakan grafin dalam komposit kuprum grafin. Keputusan menunjukkan hasil yang lebih baik diperoleh selepas proses sonikasi dan pengacauan magnetik dijalankan. Penyerakan terbaik yang lebih seragam dan sebati diperoleh pada masa sonikasi 60 min dan pengacauan magnetik pada kelajuan sederhana iaitu 350 rpm. Zarah grafin didapati kurang bertumpu pada satu tempat dan penggumpalan semula juga tidak berlaku. Penyerakan sebati ini menjadikan hubungan antara muka zarah-zarah grafin dan kuprum menjadi lebih baik seterusnya mampu mengurangkan keliangan bagi penghasilan jasad akhir.

 

Kata kunci: Grafin; komposit; kuprum; penyerakan; sonikasi

 

ABSTRACT

Currently, graphene is widely discussed among researchers due to its thermal flowability that can improve the properties of composite materials. This research used the addition of graphene in copper matrix with a combination of binders which are polyethylene glycol (PEG), polymethyl methacrylate (PMMA) and stearic acid. The use of graphene as a filler material in copper matrix is a new approach in enhancing the thermal conductivity of the product produced. However, the additions of graphene in copper matrix can produce uneven composite because of the agglomeration of graphene particles. Therefore, sonication and magnetic stirring methods during pre-mixing process were used to produce a uniform feedstock with a better dispersion of graphene with minimum agglomeration. Sonication process temperature was set at 55˚C with different sonication duration which is 30, 60 and 90 min. For the magnetic stirring process, the parameters are 55˚C for 21 h at different speeds such as 300, 350 and 400 rpm. Field Emission Scanning Electron Microscope (FESEM) and EDX Mapping were carried out to observe the dispersion of graphene in the copper graphene composites. It was found that, better results were obtained after sonication and magnetic stirring process conducted. The best dispersion with more uniform and homogeneous was obtained at 60 min sonication time and medium magnetic stirring speed at 350 rpm. Graphene particles were found less grouping and did not re-agglomerate. This homogeneous dispersion made the interface relationship between copper and graphene particles better and porosities for the fabrication of final parts reduced.

 

Keywords: Composite; copper; dispersion; graphene; sonication

REFERENCES

Atif, R. & Inam, F. 2016. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology 7(1): 1174-1196.

Azaman, N.E., Raza., M.R., Muhamad, N., Akhtar, M.N., Sulong. A.B. 2016. Rheological study of copper and copper grapheme feedstock for powder injection molding. Journal of Physics: Conference Series 790(1).

Chen, F., Ying, J., Wang, Y., Du, S., Liu, Z. & Huang, Q. 2016. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96(November): 836-842.

Frmyr, T.R., Hansen, F.K. & Olsen, T. 2012. The optimum dispersion of carbon nanotubes for epoxy nanocomposites: Evolution of the particle size distribution by ultrasonic treatment. Journal of Nanotechnology 2012: Article ID. 545930.

Guo, Z., Ran, S. & Fang, Z. 2013. Promoting dispersion of graphene nanoplatelets in polyethylene and chlorinated polyethylene by Friedel-Crafts reaction. Composites Science and Technology 86: 157-163.

Ma, P.C., Siddiqui, N.A., Marom, G. & Kim, J.K. 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 41(10): 1345-1367.

Muhsan, A.S., Ahmad, F., Mohamed, N.M., Megat Yusoff, P.S.M. & Rafi Raza, M. 2013. Uniform dispersion of multiwalled carbon nanotubes in copper matrix nanocomposites using metal injection molding technique. International Journal of Manufacturing Engineering 2013(November 2015): 1-9.

Ruffino, F., Meli, G. & Grimaldi, M.G. 2016. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts. Solid State Communications 225(JANUARY): 1-6.

Shah, R., Kausar, A. & Muhammad, B. 2015. Exploration of polythiophene/graphene, poly(methyl methacrylate)/ graphene and polythiophene-co- poly(methyl methacrylate)/ graphene nanocomposite obtained via in-situ technique. Journal of Plastic Film and Sheeting 31(2): 144-157.

Taurozzi, J.S., Hackley, V.A. & Wiesner, M.R. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment--issues and recommendations. Nanotoxicology 5(4): 711-729.

Wang, B. & Zhao, R. 2016. A review on the dispersion of graphene in aqueous solution. Sciprints. doi. 10.20944/ preprints201609.0036.v1.

Zhi, M. & Huang, W. 2016. Curing kinetics, mechanical properties and thermal stability of epoxy/graphene nanoplatelets (GNPs) powder coatings. Journal of Wuhan University of Technology- Mater. Sci. Ed. 31(5): 1155-1161.

 

 

*Corresponding author; email: nabillakadiman@ gmail.com

 

 

 

previous