Sains Malaysiana 47(5)(2018):
941–949
http://dx.doi.org/10.17576/jsm-2018-4705-09
Surface Modification
of Cellulose Nanomaterial for Urea Biosensor Application
(Pengubahsuaian Permukaan Bahan Nano Selulosa untuk Aplikasi Biosensor Urea)
WAN ELINA FARADILLA WAN KHALID1,2, LEE YOOK HENG1* & MOHAMAD NASIR MAT ARIP3
1School of Chemical
Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Applied Science, Universiti Teknologi MARA, Negeri Sembilan, Kuala Pilah Campus, Pekan Parit Tinggi,
72000 Kuala Pilah, Negeri Sembilan Darul Khusus, Malaysia
3Forest Products
Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia
Received: 14 September
2017/Accepted: 4 January 2018
ABSTRACT
Cellulose
nanomaterial with rod-like structure and highly crystalline order, usually
formed by elimination of the amorphous region from cellulose during acid
hydrolysis. Cellulose nanomaterial with the property of biocompatibility and
nontoxicity can be used for enzyme immobilization. In this work, urease enzyme
was used as a model enzyme to study the surface modification of cellulose
nanomaterial and its potential for biosensor application. The cellulose
nanocrystal (CNC) surface was modified using
2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated
oxidation to introduce the carboxyl group at C6 primary alcohol. The success of
enzyme immobilization and surface modification was confirmed using chemical
tests and measured using UV-Visible spectrophotometer. The
immobilization strategy was then applied for biosensor application for urea
detection. Cyclic voltammetry (CV) and differential pulse
voltammetry (DPV) techniques were used for electroanalytical
characterization of the urea biosensor.
Keywords: Biosensor;
cellulose nanomaterial; enzyme immobilization; surface modification
ABSTRAK
Bahan nanoselulosa dengan struktur seperti rod dan susunan hablur yang sangat bertertib, biasanya terbentuk dengan penghapusan bahagian amorfus daripada selulosa semasa hidrolisis asid. Bahan nano selulosa dengan sifat bioserasi dan tidak toksik boleh digunakan untuk pemegunan enzim. Dalam kajian ini, enzim urease telah digunakan sebagai enzim model untuk mengkaji pengubahsuaian permukaan pada bahan nanoselulosa dan potensi untuk aplikasi biosensor. Permukaan CNC diubah suai menggunakan kaedah pengoksidaan perantara-TEMPO untuk memasukkan kumpulan karboksil pada C6 alkohol primer. Kejayaan pemegunan enzim dan pengubahsuaian permukaan ditentukan dengan menggunakan ujian kimia serta diukur menggunakan spektrofotometer Ultra-lembayung Nampak. Strategi pemegunan ini seterusnya digunakan untuk aplikasi biosensor bagi penentuan urea. Teknik voltametri siklik (CV) dan teknik voltametri denyut pembezaan (DPV) digunakan untuk pencirian elektroanalisis biosensor urea.
Kata kunci: Bahan nano selulosa; biosensor; pemegunan enzim; pengubahsuaian permukaan
REFERENCES
Abd Manan, F.A., Abdullah, J., Nazri, N.N., Abd Malik, I.N., Yusof, N.A.
& Ahmad, I. 2016. Immobilization of tyrosinase in nanocrystalline cellulose/chitosan composite film for amperometric detection of phenol. Malaysian
Journal of Analytical Sciences 20(5): 978-985.
Alqasaimeh,
M.S., Heng, L.Y. & Ahmad, M. 2007. A urea
biosensor from stacked sol-gel films with immobilized nile blue chromoionophore and urease enzyme. Sensors 7(10):
2251-2262.
Azahari,
N.A., Sarani, Z., Kaco, H.,
Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa kenaf terjana semula daripada larutan akues NaOH/urea yang digumpal menggunakan asid sulfurik. Sains Malaysiana46(5):
795-801.
Beale,
R.N. & Croft, D. 1961. A sensitive method for the colorimetric determination
of urea. Journal of Clinical Pathology 14: 418-424.
Braun,
W.A., Horn, B.C., Hoehne, L., Stülp,
S., Rosa, M.B.D. & Hilgemann, M. 2017.
Poly(methylene blue)-modified electrode for indirect electrochemical sensing of
OH radicals and radical scavengers. An Acad Bras Cienc89(3): 1381- 1389.
Buffa,
J.M., Grela, A.M., Aranguren,
M.I. & Mucci, V. 2016. EPR spectroscopy applied
to the study of the TEMPO mediated oxidation of nanocellulose. Carbohydrate Polymers 136: 744-749.
Cao,
S.L., Li, X.H., Lou, W.Y. & Zong, M.H. 2014.
Preparation of novel magnetic cellulose nanocrystal and its efficient use for
enzyme immobilization. Journal of Materials Chemistry B 2: 5522-5530.
Ceriotti, G.
& Spandrio, L. 1963. A spectrophotometric method
for determination of urea. Clinica Chimica Acta8: 295-299.
Chen,
G., Liu, Y., Liu, Y., Tian, Y. & Zhang, X. 2015. Nitrogen and sulfur
dual-doped graphene for glucose biosensor application. Journal of
Electroanalytical Chemistry 738: 100-107.
Chen,
M., Hou, C., Huo, D., Fa, H.,
Zhao, Y. & Shen, C. 2017. A sensitive electrochemical DNA biosensor based
on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sensors and Actuators B: Chemical 239: 421-429.
Chirizzi, D.
& Malitesta, C. 2011. Potentiometric urea biosensor
based on urease immobilized by an electrosynthesized poly(o-phenylenediamine) film with buffering
capability. Sensors and Actuators B: Chemical 157: 211-215.
da
Silva Perez, D., Montanari, S. & Vignon, M.R. 2003. TEMPO-mediated oxidation of cellulose
III. Biomacromolecules 4: 1417-1425.
Dai,
H., Gong, L., Xu, G., Zhang, S., Lu, S., Jiang, Y., Lin, Y., Guo, L. & Chen, G. 2013. An electrochemical sensing
platform structured with carbon nanohorns for
detecting some food borne contaminants. Electrochimica Acta111: 57-63.
Du,
P., Wu, P. & Cai, C. 2008. A glucose biosensor
based on electrocatalytic oxidation of NADPH at
single-walled carbon nanotubes functionalized with poly(nile blue A). Journal of Electroanalytical Chemistry 624: 21-26.
Emami Meibodi, A.S. & Haghjoo, S.
2014. Amperometric urea biosensor based on covalently
immobilized urease on an electrochemically polymerized film of polyaniline
containing MWCNTs. Synthetic Metals 194: 1-6.
Esmaeili, C., Yook Heng, L. & Ling Ling, T. 2015. Nile Blue chromoionophore-doped
kappa-carrageenan for a novel reflectometric urea
biosensor. Sensors and Actuators B: Chemical 221: 969-977.
Gholivand,
M.B. & Khodadadian, M. 2014. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol
oxidase and catalase on a graphene/ionic liquid-modified glassy carbon
electrode. Biosensors and Bioelectronics 53: 472-478.
Hamilton,
A. & Breslin, C.B. 2014. The development of a
novel urea sensor using polypyrrole. Electrochimica Acta145:
19-26.
Hao, W.,
Das, G. & Yoon, H.H. 2015. Fabrication of an amperometric urea biosensor using urease and metal catalysts immobilized by a polyion complex. Journal of Electroanalytical Chemistry 747:
143-148.
Incani, V., Danumah, C. & Boluk, Y.
2013. Nanocomposites of nanocrystalline cellulose for
enzyme immobilization. Cellulose 20: 191-200.
Isogai, A.
& Kato, Y. 1998. Preparation of polyuronic acid
from cellulose by TEMPO-mediated oxidation. Cellulose 5: 153-164.
Ispirli Doğaç, Y., Deveci, I., Teke, M. & Mercimek, B. 2014.
TiO2 beads and TiO2-chitosan beads for urease
immobilization. Materials Science & Engineering C 42: 429-35.
Janegitz,
B.C., Pauliukaite, R., Ghica,
M.E., Brett, C.M.A. & Fatibello-Filho, O. 2011.
Direct electron transfer of glucose oxidase at glassy carbon electrode modified
with functionalized carbon nanotubes within a dihexadecylphosphate film. Sensors and Actuators B: Chemical 158: 411-417.
Kaco, H., Baharin, K.W., Zakaria, S.,
Chia, C.H., Sajab, M.S., Jaafar,
S.N.S. & Gan, S.Y. 2017. Preparation and
characterization of Fe3O4/regenerated cellulose membrane. Sains Malaysiana46(4):
623-628.
Kim,
H.J., Park, S., Kim, S.H., Kim, J.H., Yu, H.J., Kim, H.J., Yang, Y.H., Kan, E.S., Kim, Y.H. & Lee, S.H. 2015. Biocompatible
cellulose nanocrystals as supports to immobilize lipase. Journal of
Molecular Catalysis B: Enzymatic 122: 170-178.
Lin,
N., Huang, J., Chang, P.R., Feng, J. & Yu, J. 2011. Surface acetylation of
cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydrate
Polymers 83: 1834-1842.
Luo,
Y.C. & Do, J.S. 2004. Urea biosensor based on PANi(urease)-Nafion/Au composite electrode. Biosensors and
Bioelectronics 20: 15-23.
Mahmoud,
K.A., Lam, E., Hrapovic, S. & Luong, J.H.T. 2013.
Preparation of well-dispersed gold/magnetite nanoparticles embedded on
cellulose nanocrystals for efficient immobilization of papain enzyme. ACS
Applied Materials and Interfaces 5: 4978-4985.
Mahmoud, K.A., Male,
K.B., Hrapovic, S. & Luong, J.H.T. 2009.
Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme
immobilization. ACS Applied Materials and Interfaces 1: 1383-1386.
Marinho, M.I.C., Cabral, M.F.
& Mazo, L.H. 2012. Is the poly (methylene
blue)-modified glassy carbon electrode an adequate electrode for the simple
detection of thiols and amino acid-based molecules? Journal of
Electroanalytical Chemistry 685: 8-14.
Miller, P.W. 1971.
Determination of urea in animal tissues by gas chromatography. Journal of
Agricultural and Food Chemistry 19: 941-943.
Othman, M.A.F., Ahmad@Othman, A. & Zuki, H.M.
2016. Dithiozone modified silver electrode for the
determination of metal ions in aqueous solution. Malaysian Journal of Analytical
Sciences 20: 197-204.
Paz Zanini, V.I., Gavilan, M., Lopez
de Mishima, B.A., Martino, D.M. & Borsarelli, C.D. 2016. A highly sensitive and stable
glucose biosensor using thymine-based polycations into laponite hydrogel films. Talanta 150: 646-654.
Povedano, E., Cincotto, F.H., Parrado, C., Díez, P., Sánchez, A., Canevari,
T.C., Machado, S.A.S., Pingarrón, J.M. & Villalonga, R. 2017. Decoration of reduced graphene oxide
with rhodium nanoparticles for the design of a sensitive electrochemical enzyme
biosensor for 17β-estradiol. Biosensors and Bioelectronics 89(Part
1): 343-351.
Raghav, R. & Srivastava,
S. 2016. Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine- AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosensors and Bioelectronics 78: 396-403.
Sabury, S., Kazemi, S.H. & Sharif, F. 2015. Graphene – gold
nanoparticle composite: Application as a good scaffold for construction of
glucose oxidase biosensor. Materials Science and Engineering C 49:
297-304.
Sadasivuni, K.K., Kafy, A., Zhai, L., Ko, H.U., Mun, S. & Kim, J.
2014. Supporting - Transparent and flexible cellulose nanocrystal/reduced
graphene oxide film for proximity sensing. Small 11: 994-1002.
Sadeghifar, H., Filpponen, I., Clarke, S.P., Brougham, D.F. & Argyropoulos, D.S. 2011. Production of cellulose
nanocrystals using hydrobromic acid and click
reactions on their surface. Journal of Materials Science 46: 7344-7355.
Saeedfar, K., Heng, L.Y., Ling Ling, T. & Rezayi, M. 2013. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors 13:
16851-16866.
Shalini, J., Sankaran, K.J., Lee, C.Y., Tai, N.H. & Lin, I.N. 2014.
An amperometric urea biosensor based on covalent
immobilization of urease on N2 incorporated diamond nanowire
electrode. Biosensors and Bioelectronics 56: 64-70.
Siddiquee, S., Yusof, N.A., Salleh, A.B., Abu
Bakar, F. & Heng, L.Y. 2010. Electrochemical DNA
biosensor for the detection of specific gene related to Trichoderma harzianumspecies. Bioelectrochemistry 79: 31-36.
Silber, A., Hampp, N. & Schuhmann, W.
1996. Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in
glucose biosensors. Biosensors and Bioelectronics 11: 215-223.
Trivedi, U.B., Lakshminarayana, D., Kothari, I.L., Patel, N.G., Kapse, H.N., Makhija, K.K.,
Patel, P.B. & Panchal, C.J. 2009. Potentiometric biosensor for urea
determination in milk. Sensors and Actuators, B: Chemical 140(1):
260-266.
Tyagi, M., Tomar, M. & Gupta, V. 2014. Glad assisted synthesis of NiO nanorods for realization of
enzymatic reagentless urea biosensor. Biosensors
and Bioelectronics 52: 196-201.
Xiao, M., Wang, L.,
Wu, Y., Huang, X. & Dang, Z. 2008. Electrochemical study of methylene blue/titanate nanotubes nanocomposite and its layer-by-layer
assembly multilayer films. Journal Solid State Electrochemistry 12:
1159-1166.
Zaman, M., Xiao, H., Chibante, F. & Ni, Y. 2012. Synthesis and characterization
of cationically modified nanocrystalline cellulose. Carbohydrate Polymers 89: 163-170.
*Corresponding
author; email: leeyookheng@yahoo.co.uk