Sains Malaysiana 47(5)(2018): 977–989

http://dx.doi.org/10.17576/jsm-2018-4705-13

 

Inclusion of Curcumin in β-cyclodextrins as Potential Drug Delivery System: Preparation, Characterization and Its Preliminary Cytotoxicity Approaches

(Penambahan Kurkumin dalam β-siklodekstrin sebagai Potensi Sistem Penyampaian Ubat: Penyediaan, Pencirian dan Pendekatan Awal Kesitotoksikan)

 

MUHAMMAD HASNOR JA'FAR1, NIK NUR SYAZNI NIK MOHAMED KAMAL1, BOON YIH HUI1, MUHAMMAD FAHMI KAMARUZZAMAN1, NUR NADHIRAH MOHAMAD ZAIN1, NOORFATIMAH YAHAYA1 & MUGGUNDHA RAOOV*2,3

 

1Integrative Medicine Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia

2Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Universiti Malaya Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 2 September 2017/Accepted: 5 December 2017

 

ABSTRACT

The development and application of organic based drug carrier in drug delivery system (DDSs) with greater efficacy and fewer side effects remains a significant challenge in modern scientific and medical research. The aim of current study was to evaluate the ability of β-cyclodextrin (β-CD) as drug delivery carrier to encapsulate Curcumin (CUR), a promising chemotherapeutic that exhibits low aqueous solubility and poor bioavailability forming inclusion complex by kneading method to enhance its delivery to cancer cells. Different methods and analysis such as Fourier Transform Infrared (FTIR) spectrometer, 1H Nuclear Magnetic Resonance (1H NMR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Thermo-gravimetric Analysis (TGA) were employed to approve the successful formation of the inclusion complex where the aromatic ring of CUR has been encapsulated by the hydrophobic cavity of β-CD. UV absorption indicated that β-CD complex with CUR with an apparent formation constant of 1.09 × 10-8mol-1dm-3. Based on the data obtained by methylthiazole tetrazolium (MTT), β-CD showed that not only did it enhanced Curcumin delivery, but it also improved and promoted the anti-proliferative effect of CUR during the complexation rather than CUR alone on the MCF-7 human breast cancer cells at 24 h incubation period with IC50 lower than that of Curcumin alone. The toxicities of the β-CD-CUR towards MCF-7 cells were also compared to the free tamoxifen, Curcumin and β-CD. This study provides a preliminary toxicity evaluation based on β-CD-CUR inclusion complex as potential delivery system towards the selected cancer cells.

 

Keywords: β-cyclodextrin; Curcumin; cytotoxicity; inclusion complex

 

ABSTRAK

Perkembangan dan penggunaan pengangkut ubat organik dalam sistem pengangkutan ubat (DDSs) dengan lebih berkesan dan kesan sampingan yang sedikit masih menjadi cabaran besar dalam penyelidikan sains dan perubatan moden. Objektif kajian ini adalah untuk menilai keupayaan β-siklodekstrin (β-CD) sebagai pengangkut ubat untuk merangkumkan Kurkumin (CUR), satu kemoterapeutik yang mempunyai kelarutan air dan ketersediaan biologi rendah agar dapat membentuk kompleks inklusi dengan cara menguli untuk meningkatkan penghantarannya ke sel kanser. Kaedah pencirian seperti inframerah transformasi Fourier (FTIR), 1H Resonans Magnet Nukleus (1H NMR), pembelauan sinar-X (XRD), Mikroskop Elektron Pengimbas (SEM) dan Analisis -Gravimetrik Terma (TGA) telah digunakan untuk membuktikan pembentukan kompleks inklusif dengan gelang aromatik CUR telah dirangkumkan dalam rongga hidrofobik β-CD. Penyerapan ultra-lembayung (UV) menunjukkan kompleks β-CD dengan CUR mempunyai pembentukan pemalar ketara 1.09 × 10-8 mol-1 dm-3. Berdasarkan data methylthiazole tetrazolium (MTT), β-CD bukan sahaja meningkatkan pengangkutan Kurkuminmalahan menambah baik dan mempromosikan kesan anti-proliferatifnya semasa kompleks pada MCF-7 sel kanser payudara manusia dalam tempoh inkubasi 24 jam dengan IC50 lebih rendah daripada Kurkumin sahaja. Toksiksiti β-CD-CUR terhadap sel MCF-7 juga dibandingkan dengan tamoxifen, Kurkumin dan β-CD asli. Kajian ini berjaya menyediakan penilaian ketoksikan awal berdasarkan rangkuman kompleks β-CD-CUR sebagai sistem pengangkutan ubat yang berpotensi ke arah sel-sel kanser yang dipilih.

 

Kata kunci: β-siklodekstrin; kesitotoksikan ; Kurkumin; rangkuman kompleks

REFERENCES

Bar-Sela, G., Epelbaum, R. & Schaffer, M. 2010. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Current Medicinal Chemistry 17: 190-197.

Danhier, F., Olivier, F. & Véronique, P. 2010. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug gelivery. Journal of Controlled Release 148(2): 135-146.

Fermeglia, M., Ferrone, M., Lodi, A. & Pricl, S. 2003. Host-guest inclusion complexes between anticancer drugs and β-Cyclodextrin: Computational studies. Carbohydrate Polymers 53(1): 15-44.

Gafner, S., Sang, K.L., Muriel, C., Sophie, B., Laurent, V., Serge, L., Rajendra, G.M., Charles, W.B. & John, M.P. 2004. Biologic evaluation of curcumin and structural derivatives in cancer chemoprevention model systems. Phytochemistry 65: 2849-2859.

Gómez-Galván, F., Pérez-Álvarez, L., Janire, M., Álvarez- Bautista, A., Joana, P., Catarina, M.D., Ruiz-Rubio, L., Vila-Vilela, J.L. & Luis, M.L. 2016. Preparation and characterization of soluble branched ionic β-Cyclodextrins and their inclusion complexes with triclosan. Carbohydrate Polymers 142: 149-157.

Holder, G.M., Plummer, J.L. & Ryan, A.J. 1978. The metabolism and excretion of curcumin (1,7-Bis-(4-Hydroxy-3- Methoxyphenyl)-1,6-Heptadiene-3,5-Dione) in the rat. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 8(12): 761-768.

Jabbarzadeh, K.P., Asmah, R., Patimah, I. & Kingm, H.L. 2014. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. European Journal of Pharmacology 740: 584-595.

Jahed, V., Ali, Z., Khalegh, B.A. & Mohammad, S.H. 2014. NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-Cyclodextrin and curcumin. Food Chemistry 165: 241-246.

Jha, N.N., Dhiman, G., Subhadeep, D., Arunagiri, A., Reeba, S.J., Pradeep, K.S., Narasimham, A., Irishi, N.N.N. & Samir, K.M. 2016. Effect of curcumin analogs Onα-Synuclein aggregation and cytotoxicity. Scientific Reports 6: 28511.

Khan, M.A., Zafaryab, M., Mehdi, S.H., Ahmad, I. & Rizvi, M.M. 2016. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. International Journal of Biological Macromolecules 93(Part A): 242-253.

Kuntz, I.D., Gasparro, F.P., Johnston, M.D. & Taylor, R.P. 1968. Molecular interactions and the benesi-hildebrand equation. Journal of the American Chemical Society 90(18): 4778- 4781.

Li, L., Fadi, S.B. & Razelle, K. 2005. Liposome-encapsulated curcumin. Cancer 104(6): 1322-1331.

Liu, Z., Yusheng, S., Luqing, R., Yi, H., Yuepiao, C., Qiaoyou, W., Xueqian, S., Xiaokun, L., Guang, L. & Yi, W. 2013. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer 13(1): 494.

Mangolim, C.S., Cristiane, M., Ana, C.N., Francielle, S., Mauro, L.B., Antônio, M.N. & Graciette, M. 2014. Curcumin- β-Cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry 153: 361-370.

Memisoglu-Bilensoy, E., Vural, I., Bochot, A., Renoir, J.M., Duchene, D. & Hincal, A.A. 2005. Tamoxifen citrate loaded amphiphilic β-Cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. Journal of Controlled Release 104(3): 489-496.

Mohamad, S., Hemavathy, S., Muggundha, R., Tilagam, M., Kumuthini, C. & Puvaneswary, S. 2011. Conventional study on novel dicationic ionic liquid inclusion with β-Cyclodextrin. International Journal of Molecular Sciences 12: 6329-6345.

Rachmawati, H., Citra, A.E. & Rachmat, M. 2013. Molecular inclusion complex of curcumin–β-Cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14(4): 1303-1312.

Raoov, M., Mohamad, S. & Abas, M.R. 2013. Removal of 2,4-Dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics. Journal of Hazardous Materials 263: 501-516.

Salem, M., Ying, X., Alison, A. & Elizabeth, R.G. 2015. RSC advances magnetite particles for targeted drug delivery. RSC Advances 5: 37521-37532.

Sambasevam, K.P., Mohamad, S., Norazilawati, M.S. & Ismail, N.A. 2013. Synthesis and characterization of the inclusion complex of β-Cyclodextrin and azomethine. International Journal of Molecular Sciences 14: 3671-3682.

Sou, K., Shunsuke, I., Shinji, T. & Eishun, T. 2008. Loading of curcumin into macrophages using lipid-based nanoparticles. International Journal of Pharmaceutics 352(1-2): 287-293.

Subramaniam, P., Mohamad, S. & Yatimah, A. 2010. Synthesis and characterization of the inclusion complex of dicationic ionic liquid and β-Cyclodextrin. International Journal of Molecular Sciences 11(10): 3675-3685.

Ucar, E., Serap, T., Cigdem, I., Ayfer, Y.K., Medine, E.I., Kadir, A., Yasemin, P., Elvan, B.S.B. & Perihan, U. 2017. Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Applied Radiation and Isotopes 119: 72-79.

Wan Omar, W.A., Azhar, N.A., Nurdianah, H.F. & Nik Mohamed Kamal, N.N.S. 2016. Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 6(3): 265-269.

Wang, H.Y., Juan, H. & Xia, G.F. 2007. Spectroscopic study of orange G-β-Cyclodextrin complex and its analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 66(3): 578-585.

Wilken, R., Mysore, S.V., Marilene, B.W. & Eri, S.S. 2011. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer 10(1): 12.

Williams III, R.O., Vorapann, M. & Mongkol, S. 1998. Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-Cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics 46(3): 355-360.

Yallapu, M.M., Meena, J. & Subhash, C.C. 2010. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids and Surfaces B: Biointerfaces79(1): 113-125.

Yu, H. & Qingrong, H. 2010. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry 119(2): 669-674.

Zhang, J.Q., Di, W., Kun, M.J., Da, Z., Xi, Z., Chun, P.W., Hong, Y.Z., Xiao, G.X., Yi, J. & Jun, L. 2015. Preparation, spectroscopy and molecular modelling studies of the inclusion complex of cordycepin with cyclodextrins. Carbohydrate Research 406: 55-64.

 

 

*Corresponding author; email: muggundha@um.edu.my

 

 

 

previous