Sains Malaysiana 47(6)(2018): 1077–1084

http://dx.doi.org/10.17576/jsm-2018-4706-01

 

Effect of Salinities on Gastric Emptying and Nutrient Absorption of Tiger Grouper × Giant Grouper (Epinephelus fuscoguttatus × E. lanceolatus) Hybrid

(Kesan Kemasinan terhadap Pengosongan Gastrik dan Penyerapan Nutrien pada Hibrid Kerapu Harimau × Kerapu Kertang (Epinephelus fuscoguttatus × E. lanceolatus)

 

NOORASHIKIN MD NOOR1, SIMON KUMAR DAS1,2*, ZAIDI CHE COB1,2

& MAZLAN ABD. GHAFFAR3

 

1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Institute of Oceanography and Environment, Universiti of Malaysia Terengganu

21030 Kuala Nerus, Terengganu, Malaysia

 

Received: 10 July 2017/Accepted: 1 February 2018

 

ABSTRACT

The effects of salinity on the gastric emptying time (GET) and absorption of nutrient along the alimentary tract of tiger grouper (TG) × giant grouper (GG) (Epinephelus fuscoguttatus × E. lanceolatus) hybrid were studied. Juveniles TG×GG hybrid grouper (10.0 ± 0.5 cm total length; 50.5 ± 2.0 g) were reared in different salinities (10, 15, 20, 25 and 30 parts per thousand (ppt)) and fed with commercial pellet diet during the 60-day experimental period. The fish were then slaughtered sequentially at different time intervals after initial feeding to obtain GET. Our results showed that low salinity (10-20 ppt) lead to a shorter GET in the hybrid grouper. The shortest and longest GETs were observed in 15 ppt (12 h) and 30 ppt (18 h) treatments, respectively. Apparent digestibility coefficient (ADC) using ash contents was measured to determine the absorption of nutrient in each treatment. The absorption of macronutrient in TG×GG hybrid grouper was increased as the salinity decreased. The highest absorption occurred in 15 ppt (72% protein, 75% lipid, 68% carbohydrate and 74% energy) while the lowest absorption occurred in 30 ppt (59% protein, 64% lipid, 34% carbohydrate and 55% energy). The findings of this study suggested that 15 ppt salinity facilitates faster digestion and maximize the nutrient absorption of TG×GG hybrid and may enhance the growth rate of this newly developed grouper species.

 

Keywords: Aquaculture; digestion; hybrid grouper; nutrient absorption; salinity

 

ABSTRAK

Pengaruh tahap kemasinan pada masa pengosongan gastrik (GET) dan penyerapan nutrien di dalam saluran pencernaan hibrid kerapu harimau (TG) × kerapu kertang (GG) (Epinephelus fuscoguttatus × E. lanceolatus) telah dikaji. Juvenil kerapu hibrid TG×GG (10.0 ± 0.5 cm panjang dan 50.5 ± 2.0 gram berat awal) dikultur dalam kemasinan yang berbeza (10, 15, 20, 25 dan 30 bahagian per seribu (ppt)) dan diberi pelet komersial semasa 60 hari tempoh eksperimen. Ikan disembelih mengikut urutan pada masa yang berlainan selepas makanan pertama diberi untuk mengira GET. Kesan kemasinan yang rendah (10-20 ppt) telah mengurangkan tempoh GET kerapu hibrid TG×GG. Keputusan kajian menunjukkan bahawa masa pengosongan gastrik paling pendek (GET) dan paling lama masing-masing adalah pada 15 ppt (12 jam) dan 30 ppt (18 jam). Pekali pencernaan yang ketara (ADC) menggunakan kandungan abu sebagai sampel rujukan diukur untuk menentukan penyerapan nutrien dalam setiap rawatan. Penyerapan makronutrien yang meningkat dalam kerapu hibrid TG×GG dapat diperhatikan apabila kemasinan berkurangan. Penyerapan yang tinggi dapat dilihat dalam kemasinan yang rendah iaitu 15 ppt (72% protein, lipid 75%, karbohidrat 68% dan tenaga 74%) manakala penyerapan paling rendah berlaku dalam 30 ppt (59% protein, lipid 64%, karbohidrat 34% dan tenaga 55%). Penemuan mendedahkan bahawa kemasinan 15 ppt dapat mempercepatkan proses pencernaan dan penyerapan nutrien yang maksimum dan seterusnya menyumbang kepada tumbesaran yang lebih cepat dalam spesis ikan kerapu yang baru dibangunkan ini.

 

Kata kunci: Akuakultur; kemasinan; kerapu hibrid; pencernaan; penyerapan nutrient

REFERENCES

Alava, V.R. 1998. Effect of salinity, dietary lipid source and level on growth of milkfish (Chanos chanos) fry. Aquaculture 167(3): 229-236.

Anderson, J.L., Carten, J.D. & Farber, S.A. 2011. Zebrafish lipid metabolism: From mediating early patterning to the metabolism of dietary fat and cholesterol. Methods in Cell Biology 101: 111-141.

AOAC. 1995. AOAC Official Methods of Analysis. 16th ed. New York: Arlington.

Austreng, E. 1978. Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13(3): 265-272.

Boeuf, G. & Payan, P. 2001. How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 130(4): 411-423.

Borlongan, I.G. 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89(3-4): 315-325.

Cara, J.B., Moyano, F.J., Cárdenas, S., Fernández-Díaz, C. & Yúfera, M. 2003. Assessment of digestive enzyme activities during larval development of white bream. Journal of Fish Biology 63(1): 48-58.

Conides, A.J., Parpoura, A.R. & Fotis, G. 1997. Study on the effects of salinity on the fry of the euryhaline species gilthead sea bream (Sparus aurata L. 1758). Journal of Aquaculture in the Tropics 12: 297-304.

Das, S.K., Ghaffar, M.A., Bakar, Y., Brito, M.F., Mastura, S.S. & Temple, S.E. 2014. X-radiographic observations of food passage and nutrient absorption along the alimentary tract of archerfish, Toxotes jaculatrix. Bulletin of Marine Science 90(4): 903-919.

De, M., Ghaffar, M.A., Bakar, Y. & Das, S.K. 2016. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus♀× E. lanceolatus♂. Aquaculture Reports 4: 118-124.

De, M., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on gastric emptying of hybrid grouper (Epinephelus spp.). AIP Conference Proceedings 1614(1): 616-618.

Diaz, J.P., Mani-Ponset, L., Guyot, E. & Connes, R. 1997. Biliary lipid secretion during early post-embryonic development in three fishes of aquacultural interest: Sea bass, Dicentrarchus labrax L., sea bream, Sparus aurata L., and pike-perch, Stizostedion lucioperca (L). Journal of Experimental Zoology 277(5): 365-370.

Eusebio, P.S., Toledo, J.D., Mamauag, R.E.P. & Bernas, M.J.G. 2004. Digestive enzyme activity in developing grouper (Epinephelus coioides) larvae. In Advances in Grouper Aquaculture, edited by Rimmer, M.A., McBride, S. & Williams, K.C. Canberra: Australian Center for International Agriculture Research.

Ferraris, R.P., Catacutan, M.R., Mabelin, R.L. & Jazul, A.P. 1986. Digestibility in milkfish, Chanos chanos (Forsskal): Effects of protein source, fish size and salinity. Aquaculture 59(2): 93-105.

Firdaus-Nawi, M., Zamri-Saad, M., Nik-Haiha, N.Y., Zuki, M.A.B. & Effendy, A.W.M. 2013. Histological assessments of intestinal immuno-morphology of tiger grouper juvenile, Epinephelus fuscoguttatus. SpringerPlus 2(1): 611-614.

García-Meilán, I., Ordóñez-Grande, B., Machahua, C., Buenestado, S., Fontanillas, R. & Gallardo, M.A. 2016. Effects of dietary protein-to-lipid ratio on digestive and absorptive processes in sea bass fingerlings. Aquaculture 463: 163-173.

Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y. & Estévez, A. 2009. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287(3-4): 381-387.

Grosell, M. 2006. Intestinal anion exchange in marine fish osmoregulation. Journal of Experimental Biology 209(15): 2813-2827.

Hamre, K., Lukram, I.M., Rønnestad, I., Nordgreen, A. & Sæle, Ø. 2011. Pre-digestion of dietary lipids has only minor effects on absorption, retention and metabolism in larval stages of Atlantic cod (Gadus morhua). British Journal of Nutrition 105(6): 846-856.

Ikeda, M., Kakizaki, H. & Matsumiya, M. 2017. Biochemistry of fish stomach chitinase. International Journal of Biological Macromolecules 104: 1672-1681.

Jones, D.B. 1931. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins. Washington, DC: US Department of Agriculture.

Lied, E., Julshamn, K. & Braekkan, O.R. 1982. Determination of protein digestibility in Atlantic cod (Gadus morhua) with internal and external indicators. Canadian Journal of Fisheries and Aquatic Sciences 39(6): 854-861.

Maynard, L.A., Loosli, J.K., Hintz, H.F. & Warner, R.G. 1979. Animal Nutrition. 7th edition. St. Louis: McGraw-Hill.

Mazlan, A.G. & Grove, D.J. 2003. Gastric digestion and nutrient absorption along the alimentary tract f whiting (Merlangius merlangus L.) fed on natural prey. Journal of Applied Ichthyology 19(4): 229-238.

Moutou, K.A., Panagiotaki, P. & Mamuris, Z. 2004. Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: A preliminary study. Aquaculture Research 35(9): 912-914.

Morgan, J.D. & Iwama, G.K. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 48(11): 2083-2094.

Murray, H.M., Gallant, J.W., Perez-Casanova, J.C., Johnson, S.C. & Douglas, S.E. 2003. Ontogeny of lipase expression in winter flounder. Journal of Fish Biology 62(4): 816-833.

Orsod, M., Joseph, M. & Huyop, F. 2012. Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian sea bass (Lates calcarifer). Malaysian Journal of Microbiology 8(3): 170- 174.

Partridge, G.J. & Jenkins, G. I. 2002. The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 210(1-4): 219-230.

Ribeiro, L., Couto, A., Olmedo, M., Álvarez-Blázquez, B., Linares, F. & Valente, L.M. 2008. Digestive enzyme activity at different developmental stages of blackspot seabream, Pagellus bogaraveo (Brunnich 1768). Aquaculture Research 39(4): 339-346.

Singhabun, A. & Kummee, W. 2015. Effect of density, feeding frequency and salinity on growth and survival rate of juvenile giant grouper (Epinephelus lanceolatus Bloch, 1790). Aquaculture International 23: 671-682.

Specziar, A. 2002. In situ estimates of gut evacuation and its dependence on temperature in five cyprinids. Journal of Fish Biology 60(5): 1222-1236.

Su-Jiu, W., Hai-Fa, Z., Jun, Z., Yu-Qing, Y. & Shao-Sen, Y. 2011. Effects of different salinities on growth and physiology of orange-spotted grouper, Epinephelus coioides. Journal of Guangdong Ocean University 6: 7-10.

Sutthinon, P., Thongprajukaew, K., Saekhow, S. & Ketmanee, R. 2015. Juvenile hybrid grouper (Epinephelus coioides× E. lanceolatus) are euryhaline and can grow in a wide range of salinities. Aquaculture International 23(2): 671-682.

Temming, A. & Herrmann, J.P. 2001. Gastric evacuation in horse mackerel. I. The effects of meal size, temperature and predator weight. Journal of Fish Biology 58(5): 1230-1245.

Vinagre, C., Maia, A. & Cabral, H.N. 2007. Effect of temperature and salinity on the gastric evacuation of juvenile sole Solea solea and Solea senegalensis. Journal of Applied Ichthyology 23(3): 240-245.

Wetherbee, B.M, Gruber, S.H. & Ramsey, A. 1987. X-radiographic observations of food passage through digestive tracts of lemon sharks. Transactions of the American Fisheries Society 116(5): 763-767.

Wuenschel, M.J. & Werner, R.G. 2004. Consumption and gut evacuation rate of laboratory-reared spotted seatrout (Sciaenidae) larvae and juveniles. Journal of Fish Biology 65(3): 723-743.

Xin, L., Xiaoyun, H., Yunbo, L., Guoying, X., Xianbin, J. & Kunlun, H. 2008. Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. Journal of Food Composition and Analysis 21(7): 535-539.

Xiong, D.M., Xie, C.X., Zhang, H.J. & Liu, H.P. 2011. Digestive enzymes along digestive tract of a carnivorous fish Glyptosternum maculatum (Sisoridae, Siluriformes). Journal of Animal Physiology and Animal Nutrition 95(1): 56-64.

Zambonino-Infante, J.L., Mazurais, D., Dubuc, A., Quéau, P., Vanderplancke, G., Servili, A., Cahu, C., Le Bayon, N., Huelvan, C. & Claireaux, G. 2017. An early-life hypoxia event has a long-term impact on protein digestion and growth in juvenile European sea bass. Journal of Experimental Biology 220(10): 1846-1851.

 

*Corresponding author; email: simon@ukm.edu.my