Sains Malaysiana 47(6)(2018): 1077–1084
http://dx.doi.org/10.17576/jsm-2018-4706-01
Effect
of Salinities on Gastric Emptying and Nutrient Absorption of Tiger
Grouper × Giant Grouper (Epinephelus fuscoguttatus ×
E. lanceolatus) Hybrid
(Kesan
Kemasinan terhadap Pengosongan Gastrik dan Penyerapan Nutrien
pada Hibrid Kerapu Harimau × Kerapu Kertang (Epinephelus
fuscoguttatus × E. lanceolatus)
NOORASHIKIN MD NOOR1, SIMON KUMAR DAS1,2*, ZAIDI CHE COB1,2
& MAZLAN ABD. GHAFFAR3
1School of
Environmental and Natural Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Marine Ecosystem
Research Center, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Institute
of Oceanography and Environment, Universiti of Malaysia Terengganu
21030
Kuala Nerus, Terengganu, Malaysia
Received:
10 July 2017/Accepted: 1 February 2018
ABSTRACT
The effects of salinity on the gastric emptying time (GET)
and absorption of nutrient along the alimentary tract of tiger
grouper (TG)
× giant grouper (GG) (Epinephelus fuscoguttatus × E. lanceolatus) hybrid
were studied. Juveniles TG×GG hybrid
grouper (10.0 ± 0.5 cm total length; 50.5 ± 2.0
g) were reared in different salinities (10, 15, 20, 25 and 30
parts per thousand (ppt)) and fed with commercial pellet diet
during the 60-day experimental period. The fish were then slaughtered
sequentially at different time intervals after initial feeding
to obtain GET. Our results showed that low salinity (10-20 ppt) lead
to a shorter GET in the hybrid grouper. The shortest
and longest GETs were observed in 15 ppt (12 h) and
30 ppt (18 h) treatments, respectively. Apparent digestibility
coefficient (ADC)
using ash contents was measured to determine the absorption of
nutrient in each treatment. The absorption of macronutrient in
TG×GG
hybrid grouper was increased as the salinity decreased.
The highest absorption occurred in 15 ppt (72% protein, 75% lipid,
68% carbohydrate and 74% energy) while the lowest absorption occurred
in 30 ppt (59% protein, 64% lipid, 34% carbohydrate and 55% energy).
The findings of this study suggested that 15 ppt salinity facilitates
faster digestion and maximize the nutrient absorption of TG×GG
hybrid and may enhance the growth rate of this newly
developed grouper species.
Keywords: Aquaculture; digestion; hybrid grouper; nutrient
absorption; salinity
ABSTRAK
Pengaruh tahap kemasinan pada masa pengosongan gastrik (GET)
dan penyerapan nutrien di dalam saluran pencernaan hibrid kerapu
harimau (TG)
× kerapu kertang (GG) (Epinephelus fuscoguttatus × E. lanceolatus)
telah dikaji. Juvenil kerapu hibrid TG×GG
(10.0 ± 0.5 cm panjang dan 50.5 ±
2.0 gram berat awal) dikultur dalam kemasinan yang berbeza (10,
15, 20, 25 dan 30 bahagian per seribu (ppt)) dan diberi pelet
komersial semasa 60 hari tempoh eksperimen. Ikan disembelih mengikut
urutan pada masa yang berlainan selepas makanan pertama diberi
untuk mengira GET.
Kesan kemasinan yang rendah (10-20 ppt) telah
mengurangkan tempoh GET kerapu hibrid TG×GG.
Keputusan kajian menunjukkan bahawa masa pengosongan gastrik paling
pendek (GET)
dan paling lama masing-masing adalah pada 15 ppt (12 jam) dan
30 ppt (18 jam). Pekali pencernaan yang ketara (ADC)
menggunakan kandungan abu sebagai sampel rujukan diukur untuk
menentukan penyerapan nutrien dalam setiap rawatan. Penyerapan
makronutrien yang meningkat dalam kerapu hibrid TG×GG
dapat diperhatikan apabila kemasinan berkurangan.
Penyerapan yang tinggi dapat dilihat dalam kemasinan yang rendah
iaitu 15 ppt (72% protein, lipid 75%, karbohidrat 68% dan tenaga
74%) manakala penyerapan paling rendah berlaku dalam 30 ppt (59%
protein, lipid 64%, karbohidrat 34% dan tenaga 55%). Penemuan
mendedahkan bahawa kemasinan 15 ppt dapat mempercepatkan proses
pencernaan dan penyerapan nutrien yang maksimum dan seterusnya
menyumbang kepada tumbesaran yang lebih cepat dalam spesis ikan
kerapu yang baru dibangunkan ini.
Kata kunci: Akuakultur; kemasinan; kerapu hibrid;
pencernaan; penyerapan nutrient
REFERENCES
Alava, V.R. 1998. Effect of
salinity, dietary lipid source and level on growth of milkfish
(Chanos chanos) fry. Aquaculture 167(3):
229-236.
Anderson, J.L., Carten, J.D.
& Farber, S.A. 2011. Zebrafish lipid metabolism: From mediating early patterning to the
metabolism of dietary fat and cholesterol. Methods in Cell
Biology 101: 111-141.
AOAC. 1995. AOAC Official Methods of Analysis.
16th ed. New York: Arlington.
Austreng, E. 1978. Digestibility determination in fish using chromic
oxide marking and analysis of contents from different segments
of the gastrointestinal tract. Aquaculture 13(3): 265-272.
Boeuf, G. & Payan, P. 2001. How should salinity
influence fish growth? Comparative Biochemistry and Physiology
Part C: Toxicology & Pharmacology 130(4): 411-423.
Borlongan, I.G. 1990. Studies
on the digestive lipases of milkfish, Chanos chanos.
Aquaculture 89(3-4): 315-325.
Cara, J.B., Moyano, F.J., Cárdenas,
S., Fernández-Díaz, C. & Yúfera, M. 2003.
Assessment of digestive enzyme activities during larval development
of white bream. Journal of Fish Biology 63(1): 48-58.
Conides, A.J., Parpoura, A.R. & Fotis, G. 1997. Study on the effects of salinity on the fry of the euryhaline species
gilthead sea bream (Sparus aurata L. 1758). Journal
of Aquaculture in the Tropics 12: 297-304.
Das, S.K., Ghaffar, M.A., Bakar, Y., Brito, M.F.,
Mastura, S.S. & Temple, S.E. 2014. X-radiographic observations of food passage
and nutrient absorption along the alimentary tract of archerfish,
Toxotes jaculatrix. Bulletin of Marine Science
90(4): 903-919.
De, M., Ghaffar, M.A., Bakar, Y. & Das, S.K.
2016. Effect of temperature and
diet on growth and gastric emptying time of the hybrid, Epinephelus
fuscoguttatus♀× E. lanceolatus♂.
Aquaculture Reports 4: 118-124.
De, M., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on gastric emptying of hybrid
grouper (Epinephelus spp.). AIP Conference Proceedings
1614(1): 616-618.
Diaz, J.P., Mani-Ponset, L., Guyot, E. & Connes, R. 1997. Biliary
lipid secretion during early post-embryonic development in three
fishes of aquacultural interest: Sea bass, Dicentrarchus labrax
L., sea bream, Sparus aurata L., and pike-perch, Stizostedion
lucioperca (L). Journal of Experimental Zoology
277(5): 365-370.
Eusebio, P.S., Toledo, J.D., Mamauag, R.E.P. & Bernas, M.J.G.
2004. Digestive enzyme activity in developing grouper (Epinephelus
coioides) larvae. In Advances in Grouper Aquaculture,
edited by Rimmer, M.A., McBride, S. & Williams, K.C. Canberra:
Australian Center for International Agriculture Research.
Ferraris, R.P., Catacutan, M.R., Mabelin, R.L.
& Jazul, A.P. 1986. Digestibility in milkfish,
Chanos chanos (Forsskal): Effects of protein source, fish
size and salinity. Aquaculture 59(2): 93-105.
Firdaus-Nawi, M., Zamri-Saad, M., Nik-Haiha, N.Y.,
Zuki, M.A.B. & Effendy, A.W.M. 2013. Histological assessments of intestinal immuno-morphology
of tiger grouper juvenile, Epinephelus fuscoguttatus.
SpringerPlus 2(1): 611-614.
García-Meilán, I., Ordóñez-Grande, B.,
Machahua, C., Buenestado, S., Fontanillas, R. & Gallardo,
M.A. 2016. Effects of dietary protein-to-lipid
ratio on digestive and absorptive processes in sea bass fingerlings.
Aquaculture 463: 163-173.
Gisbert, E., Giménez, G., Fernández,
I., Kotzamanis, Y. & Estévez, A. 2009. Development of digestive enzymes in common dentex Dentex dentex
during early ontogeny. Aquaculture 287(3-4):
381-387.
Grosell, M. 2006. Intestinal anion exchange in
marine fish osmoregulation. Journal of Experimental
Biology 209(15): 2813-2827.
Hamre, K., Lukram, I.M., Rønnestad, I., Nordgreen, A. &
Sæle, Ø. 2011. Pre-digestion of dietary lipids has
only minor effects on absorption, retention and metabolism in
larval stages of Atlantic cod (Gadus morhua). British
Journal of Nutrition 105(6): 846-856.
Ikeda, M., Kakizaki, H. & Matsumiya, M. 2017. Biochemistry of fish stomach
chitinase. International Journal of Biological Macromolecules
104: 1672-1681.
Jones, D.B. 1931. Factors for Converting
Percentages of Nitrogen in Foods and Feeds into Percentages of
Proteins. Washington, DC: US Department of Agriculture.
Lied, E., Julshamn, K. & Braekkan, O.R.
1982. Determination of protein digestibility in Atlantic cod (Gadus
morhua) with internal and external indicators. Canadian
Journal of Fisheries and Aquatic Sciences 39(6): 854-861.
Maynard, L.A., Loosli, J.K., Hintz, H.F. & Warner, R.G. 1979.
Animal Nutrition. 7th edition. St. Louis: McGraw-Hill.
Mazlan, A.G. & Grove, D.J. 2003. Gastric digestion and nutrient
absorption along the alimentary tract f whiting (Merlangius
merlangus L.) fed on natural prey. Journal of Applied Ichthyology
19(4): 229-238.
Moutou, K.A., Panagiotaki, P. & Mamuris, Z. 2004. Effects of
salinity on digestive protease activity in the euryhaline sparid
Sparus aurata L.: A preliminary study. Aquaculture Research
35(9): 912-914.
Morgan, J.D. & Iwama, G.K. 1991. Effects
of salinity on growth, metabolism, and ion regulation in juvenile
rainbow and steelhead trout (Oncorhynchus mykiss) and fall
chinook salmon (Oncorhynchus tshawytscha). Canadian
Journal of Fisheries and Aquatic Sciences 48(11): 2083-2094.
Murray,
H.M., Gallant, J.W., Perez-Casanova, J.C., Johnson, S.C. &
Douglas, S.E. 2003. Ontogeny of lipase expression in winter flounder.
Journal of Fish Biology 62(4): 816-833.
Orsod, M., Joseph, M. & Huyop, F. 2012. Characterization of exopolysaccharides produced by Bacillus cereus
and Brachybacterium sp. isolated from Asian sea bass
(Lates calcarifer). Malaysian Journal of Microbiology
8(3): 170- 174.
Partridge, G.J. & Jenkins, G. I. 2002. The effect of salinity on growth and survival
of juvenile black bream (Acanthopagrus butcheri).
Aquaculture 210(1-4): 219-230.
Ribeiro, L., Couto, A., Olmedo, M., Álvarez-Blázquez,
B., Linares, F. & Valente, L.M. 2008. Digestive enzyme activity
at different developmental stages of blackspot seabream, Pagellus
bogaraveo (Brunnich 1768). Aquaculture Research
39(4): 339-346.
Singhabun, A. & Kummee, W. 2015. Effect of
density, feeding frequency and salinity on growth and survival
rate of juvenile giant grouper (Epinephelus lanceolatus Bloch,
1790). Aquaculture International 23: 671-682.
Specziar, A. 2002. In situ estimates of gut evacuation and
its dependence on temperature in five cyprinids. Journal
of Fish Biology 60(5): 1222-1236.
Su-Jiu, W., Hai-Fa, Z., Jun, Z., Yu-Qing, Y. &
Shao-Sen, Y. 2011. Effects
of different salinities on growth and physiology of orange-spotted
grouper, Epinephelus coioides. Journal of Guangdong
Ocean University 6: 7-10.
Sutthinon, P., Thongprajukaew, K., Saekhow, S.
& Ketmanee, R. 2015. Juvenile hybrid grouper (Epinephelus
coioides× E. lanceolatus) are euryhaline and can grow
in a wide range of salinities. Aquaculture International 23(2):
671-682.
Temming, A. & Herrmann, J.P. 2001. Gastric
evacuation in horse mackerel. I. The effects of meal size,
temperature and predator weight. Journal of Fish Biology 58(5):
1230-1245.
Vinagre, C., Maia, A. & Cabral, H.N. 2007. Effect of temperature and
salinity on the gastric evacuation of juvenile sole Solea solea
and Solea senegalensis. Journal of Applied Ichthyology
23(3): 240-245.
Wetherbee, B.M, Gruber, S.H. & Ramsey, A. 1987. X-radiographic
observations of food passage through digestive tracts of lemon
sharks. Transactions of the American Fisheries Society 116(5):
763-767.
Wuenschel, M.J. & Werner, R.G. 2004. Consumption and gut evacuation
rate of laboratory-reared spotted seatrout (Sciaenidae) larvae
and juveniles. Journal of Fish Biology 65(3): 723-743.
Xin, L., Xiaoyun, H., Yunbo, L., Guoying, X., Xianbin, J. & Kunlun,
H. 2008. Comparative analysis of nutritional composition between
herbicide-tolerant rice with bar gene and its non-transgenic counterpart.
Journal of Food Composition and Analysis 21(7): 535-539.
Xiong, D.M., Xie, C.X., Zhang, H.J. & Liu, H.P. 2011. Digestive enzymes along digestive tract of a carnivorous fish Glyptosternum
maculatum (Sisoridae, Siluriformes). Journal
of Animal Physiology and Animal Nutrition 95(1): 56-64.
Zambonino-Infante, J.L., Mazurais, D., Dubuc, A., Quéau, P.,
Vanderplancke, G., Servili, A., Cahu, C., Le Bayon, N., Huelvan,
C. & Claireaux, G. 2017. An early-life hypoxia event has a
long-term impact on protein digestion and growth in juvenile European
sea bass. Journal of Experimental Biology 220(10): 1846-1851.
*Corresponding
author; email: simon@ukm.edu.my