Sains Malaysiana 47(6)(2018): 1181–1187
http://dx.doi.org/10.17576/jsm-2018-4706-13
The
Effect of Molecular Weight on the Surface and Permeation of Poly(L-lactic
acid)-Poly(ethylene glycol) Membrane with Activated Carbon Filler
(Kesan
Berat Molekul kepada Permukaan dan Ketelapan Membran Poli(l-asid
laktik)-Poli(etilena glikol) dengan Pengisi Karbon Teraktif)
AFIFAH MUHAMAD SIDIK1, RIZAFIZAH OTHAMAN1,2 & FARAH HANNAN ANUAR1,2*
1School of Chemical
Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Polymer
Research Center, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia
43600
UKM, Bangi, Selangor Darul Ehsan, Malaysia
Received:
16 September 2017/Accepted: 7 January 2018
ABSTRACT
The use of biodegradable material in membrane technology will be a
great solution in reducing non-biodegradable waste in the landfill. Membranes
can often be useful as the recycle stream can usually be much cleaner than with
other techniques. This article describes the preparation of poly(l-lactic
acid)-poly(ethylene glycol) (PLLA-PEG) free standing flat
sheet membranes with the presence of 5 wt. % activated carbon filler. PLLA-PEG crosslinked copolymer was synthesized using PLLA with
different molecular weight PEG prepolymers i.e. 4000, 6000 and
10000 g/mol; and excess hexamethylene diisocyanate to form urethane linkages
between the polymers. The reaction was carried out in a dichloromethane/
tetrahydrofuran dual-solvents system. The PLLA-PEG/AC membranes
in the weight ratio of 7:3:0.5 were then fabricated using solution casting and
phase inversion techniques. The performance of the membranes was evaluated in
terms of permeation water flux (PWF), palm oil mill effluent (POME)
permeation, flux decline and contact angle. It was
found that membrane containing 10000 g/mol PEG has
the highest total mean in PWF, POME flux and hydraulic
permeability with values of 100.9 L/m2.h, 51.45 L/m2.h
and 64.9º;62.9º, respectively, due to high porosity. All of the membranes were
more stable towards the flux decline of POME compared to water. At the
same time, addition of AC to the copolymer considerably
enhances the texture and porosity of the fabricated membranes.
Keywords: Activated carbon; membrane; palm oil mill effluent
treatment; poly(ethylene glycol); poly(l-lactic acid)
ABSTRAK
Penggunaan bahan terbiodegradasi dalam bidang teknologi
membran adalah kaedah yang baik dalam mengurangkan sisa tidak terbiodegradasi
di tapak pelupusan. Membran sering digunakan kerana lazimnya aliran kitar semulanya
adalah lebih bersih berbanding teknik lain. Kertas ini menerangkan
penyediaan helaian membran menggunakan poli(l-asid
laktik)-poli(etilena glikol) (PLLA-PEG) dengan kehadiran sebanyak
5 wt. % pengisi karbon teraktif. Kopolimer PLLA-PEG disintesis
menggunakan PLLA dan pra-polimer PEG dengan
berat molekul yang berbeza iaitu 4000, 6000 dan 10000 g/ mol; dan
1,6-heksimetilena diisosianat (HMDI) berlebihan untuk membentuk
kumpulan berfungsi uretana antara polimer. Tindak
balas tersebut dilakukan dalam sistem dwi-pelarut iaitu diklorometana/tetrahidrofurana.
Membran PLLA-PEG/AC dalam
nisbah berat 7:3:0.5 kemudiannya difabrikasi menggunakan kaedah
penuangan larutan dan teknik penyongsangan fasa. Prestasi membran
telah dinilai daripada segi ujian ketelapan air fluks (PWF), ketelapan efluen kilang
minyak sawit (POME), penurunan fluks dan sudut
sentuhan air. Didapati bahawa membran yang mengandungi PEG 10000
g/mol mempunyai jumlah min PWF yang tertinggi, fluks POME
dan kebolehtelapan hidraulik yang tinggi masing-masing
dengan nilai 100.9 L/m2.h, 51.45 L/m2.h
dan 64.9º;62.9º disebabkan keliangan yang tinggi. Semua
membran lebih stabil terhadap ujian fluks ketelapan POME berbanding
dengan air. Pada masa yang sama,
penambahan AC
kepada kopolimer meningkatkan kualiti, tekstur dan
keliangan membran.
Kata kunci: Karbon
teraktif; membran;poli(l-asid laktik); poli(etilena
glikol); rawatan efluen kilang minyak sawit
REFERENCES
Amaral, R.A., Habert, A.C.
& Borges, C.P. 2014. Activated carbon polyurethane
membrane for a model fuel desulfurization by pervaporation. Materials
Letters 137: 468-470.
Bath, C.,
Goncalves, M.C., Pires, A.T.N., Roeder, J. & Wolf, B.A. 2000. Effects of thermodynamic
conditions during formation on their performance. Journal of Membrane
Science 169: 287-299.
Desai, N.P. & Hubbell,
J.A. 1992. Surface physical interpenetrating networks of poly(ethylene-terephthalate)
and poly(ethylene oxide) with biomedical applications. Macromolecules 25:
226-232.
Gui, Z., Xu, Y., Gao, Y.,
Lu, C. & Cheng, S. 2012. Novel polyethylene glycol-based
polyester-toughened polylactide. Materials Letters 71:
63–65.
Harun, Z., Ismail, N.F.
& Badarulzaman, N.A. 2012. Effect of MgO additive on
microstructure of Al2O3. Advance Materials Research 488-489: 335-339.
Helena, J., Andrzej, S.
& Jerzy, C. 1991. Active Carbon. London: Ellis Horwood Ltd.
Hiltunen,
K., Seppälä, J.V. & Härkönen, M. 1997. Lactic acid based poly(ester-uretahanes):
Use of hydroxyl terminated prepolymer in urethane synthesis. Journal of
Polymer Science 63: 1091-1100.
Kim, J.H. & Lee, K.H.J.
1998. Effect of PEG additive on membrane formation by phase
inversion. Membrane Science 138(2): 153-163.
Lee,
S.Y., Chin, I.J. & Jung, J.S. 1999. Crystallization behavior of poly(L-lactide)-poly(ethylene
glycol) multiblock copolymers. European Polymer Journal 35: 2147-2153.
Liu, H. & Zhang, J.
2011. Research progress in toughening modification of poly(lactic
acid). Journal Polymer Science Polymer Physics 49: 1051-1083.
Meng, B.,
Tao, J., Deng, J., Wu, Z. & Yang, M. 2011. Toughening of polylactide with higher loading
of nano-titania particles coated by poly(ε-caprolactone). Materials Letters 65: 729- 732.
Mohamad, S.H., Idris, M.I.,
Abdullah, H.Z. & Ismail, A.F. 2013.Short review of ultrafiltration of
polymer membrane as a self-cleaning and antifouling in the wastewater system. In Proceedings of the 2nd International Conference on
Sustainable Materials, Penang, Malaysia, 26-27 March.
Norfarhana, A.S. 2014.
Penyediaan adunan getah asli terepoksida/ poli(vinil
klorida)/sekam padi (ENR/PVC/SP) sebagai membran bagi rawatan air buangan. PhD
Thesis, Universiti Kebangsaan Malaysia, Malaysia (Unpublished).
Ouchi,
T., Yuyama, H. & Vogl, O.J. 1987. Syntheses of 5-fluorouracil-terminated monomethqxypqly(ethylene
glycol)S, their hydrolysis behavior, and their antitumor activities. Macromolecule
Science Chemistry A24(9): 1011- 1032.
Rasal,
R.M., Janorkar, A.V. & Hirt, D.E. 2010. Poly(lactic acid)
modifications. Programe Polymer Science 35: 338-356.
Saljoughi,
E., Amirilargani, M. & Mohammadi, T. 2010. Effect of PEG additive and
coagulation bath temperature on the morphology, permeability and
thermal/chemical stability of asymmetric CA membranes. Desalination 262:
72-78.
Shah,
R.S.S. & Singh, P.K.K. 2004. Treatment of palm oil mill effluent (POME)
using membrane technology. Symposium on Membrane
Science and Technology. Universiti
Teknologi Malaysia Institutional Repository. pp. 1-9.
Sheth, M., Kumar,
R.A., Dave, V., Gross, R.A. & Mccarthy, S.P. 1997. Biodegradable polymer blends of poly(lactic
acid) and poly(ethylene glycol). Journal Application Polymer Science 66:
1495-1505.
Wong,
C.S. & Badri, K.H. 2010. Sifat terma dan kerintangan api poliuretana berasaskan minyak isirung sawit dan minyak kacang soya. Sains
Malaysiana 39(5): 775-784.
Yunos,
M.Z., Harun, Z., Basri, H. & Ismail, A.F. 2012. Effects
of water as non-solvent additive on performance of polysulfone ultrafiltration
membrane. Advance Material Research 488- 489: 46-50.
Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm
frond activated carbon for metal ions removal. Sains Malaysiana 46(5):
773-782.
Zuo,
D.Y., Xub, Y.Y., Xua, W.L. & Zoua H.T. 2008. The
influence of PEG molecular weight on morphologies and properties of PVDF
asymmetric membranes. Chinese Journal of Polymer Science 26(4):
405-414.
*Corresponding
author; email: farahhannan@ukm.edu.my
|