Sains Malaysiana 47(6)(2018): 1181–1187

http://dx.doi.org/10.17576/jsm-2018-4706-13

 

The Effect of Molecular Weight on the Surface and Permeation of Poly(L-lactic acid)-Poly(ethylene glycol) Membrane with Activated Carbon Filler

(Kesan Berat Molekul kepada Permukaan dan Ketelapan Membran Poli(l-asid laktik)-Poli(etilena glikol) dengan Pengisi Karbon Teraktif)

 

AFIFAH MUHAMAD SIDIK1, RIZAFIZAH OTHAMAN1,2 & FARAH HANNAN ANUAR1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 16 September 2017/Accepted: 7 January 2018

 

ABSTRACT

The use of biodegradable material in membrane technology will be a great solution in reducing non-biodegradable waste in the landfill. Membranes can often be useful as the recycle stream can usually be much cleaner than with other techniques. This article describes the preparation of poly(l-lactic acid)-poly(ethylene glycol) (PLLA-PEG) free standing flat sheet membranes with the presence of 5 wt. % activated carbon filler. PLLA-PEG crosslinked copolymer was synthesized using PLLA with different molecular weight PEG prepolymers i.e. 4000, 6000 and 10000 g/mol; and excess hexamethylene diisocyanate to form urethane linkages between the polymers. The reaction was carried out in a dichloromethane/ tetrahydrofuran dual-solvents system. The PLLA-PEG/AC membranes in the weight ratio of 7:3:0.5 were then fabricated using solution casting and phase inversion techniques. The performance of the membranes was evaluated in terms of permeation water flux (PWF), palm oil mill effluent (POME) permeation, flux decline and contact angle. It was found that membrane containing 10000 g/mol PEG has the highest total mean in PWF, POME flux and hydraulic permeability with values of 100.9 L/m2.h, 51.45 L/m2.h and 64.9º;62.9º, respectively, due to high porosity. All of the membranes were more stable towards the flux decline of POME compared to water. At the same time, addition of AC to the copolymer considerably enhances the texture and porosity of the fabricated membranes.

 

Keywords: Activated carbon; membrane; palm oil mill effluent treatment; poly(ethylene glycol); poly(l-lactic acid)

 

ABSTRAK

Penggunaan bahan terbiodegradasi dalam bidang teknologi membran adalah kaedah yang baik dalam mengurangkan sisa tidak terbiodegradasi di tapak pelupusan. Membran sering digunakan kerana lazimnya aliran kitar semulanya adalah lebih bersih berbanding teknik lain. Kertas ini menerangkan penyediaan helaian membran menggunakan poli(l-asid laktik)-poli(etilena glikol) (PLLA-PEG) dengan kehadiran sebanyak 5 wt. % pengisi karbon teraktif. Kopolimer PLLA-PEG disintesis menggunakan PLLA dan pra-polimer PEG dengan berat molekul yang berbeza iaitu 4000, 6000 dan 10000 g/ mol; dan 1,6-heksimetilena diisosianat (HMDI) berlebihan untuk membentuk kumpulan berfungsi uretana antara polimer. Tindak balas tersebut dilakukan dalam sistem dwi-pelarut iaitu diklorometana/tetrahidrofurana. Membran PLLA-PEG/AC dalam nisbah berat 7:3:0.5 kemudiannya difabrikasi menggunakan kaedah penuangan larutan dan teknik penyongsangan fasa. Prestasi membran telah dinilai daripada segi ujian ketelapan air fluks (PWF), ketelapan efluen kilang minyak sawit (POME), penurunan fluks dan sudut sentuhan air. Didapati bahawa membran yang mengandungi PEG 10000 g/mol mempunyai jumlah min PWF yang tertinggi, fluks POME dan kebolehtelapan hidraulik yang tinggi masing-masing dengan nilai 100.9 L/m2.h, 51.45 L/m2.h dan 64.9º;62.9º disebabkan keliangan yang tinggi. Semua membran lebih stabil terhadap ujian fluks ketelapan POME berbanding dengan air. Pada masa yang sama, penambahan AC kepada kopolimer meningkatkan kualiti, tekstur dan keliangan membran.

 

Kata kunci: Karbon teraktif; membran;poli(l-asid laktik); poli(etilena glikol); rawatan efluen kilang minyak sawit

REFERENCES

Amaral, R.A., Habert, A.C. & Borges, C.P. 2014. Activated carbon polyurethane membrane for a model fuel desulfurization by pervaporation. Materials Letters 137: 468-470.

Bath, C., Goncalves, M.C., Pires, A.T.N., Roeder, J. & Wolf, B.A. 2000. Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science 169: 287-299.

Desai, N.P. & Hubbell, J.A. 1992. Surface physical interpenetrating networks of poly(ethylene-terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules 25: 226-232.

Gui, Z., Xu, Y., Gao, Y., Lu, C. & Cheng, S. 2012. Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters 71: 63–65.

Harun, Z., Ismail, N.F. & Badarulzaman, N.A. 2012. Effect of MgO additive on microstructure of Al2O3. Advance Materials Research 488-489: 335-339.

Helena, J., Andrzej, S. & Jerzy, C. 1991. Active Carbon. London: Ellis Horwood Ltd.

Hiltunen, K., Seppälä, J.V. & Härkönen, M. 1997. Lactic acid based poly(ester-uretahanes): Use of hydroxyl terminated prepolymer in urethane synthesis. Journal of Polymer Science 63: 1091-1100.

Kim, J.H. & Lee, K.H.J. 1998. Effect of PEG additive on membrane formation by phase inversion. Membrane Science 138(2): 153-163.

Lee, S.Y., Chin, I.J. & Jung, J.S. 1999. Crystallization behavior of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers. European Polymer Journal 35: 2147-2153.

Liu, H. & Zhang, J. 2011. Research progress in toughening modification of poly(lactic acid). Journal Polymer Science Polymer Physics 49: 1051-1083.

Meng, B., Tao, J., Deng, J., Wu, Z. & Yang, M. 2011. Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Materials Letters 65: 729- 732.

Mohamad, S.H., Idris, M.I., Abdullah, H.Z. & Ismail, A.F. 2013.Short review of ultrafiltration of polymer membrane as a self-cleaning and antifouling in the wastewater system. In Proceedings of the 2nd International Conference on Sustainable Materials, Penang, Malaysia, 26-27 March.

Norfarhana, A.S. 2014. Penyediaan adunan getah asli terepoksida/ poli(vinil klorida)/sekam padi (ENR/PVC/SP) sebagai membran bagi rawatan air buangan. PhD Thesis, Universiti Kebangsaan Malaysia, Malaysia (Unpublished).

Ouchi, T., Yuyama, H. & Vogl, O.J. 1987. Syntheses of 5-fluorouracil-terminated monomethqxypqly(ethylene glycol)S, their hydrolysis behavior, and their antitumor activities. Macromolecule Science Chemistry A24(9): 1011- 1032.

Rasal, R.M., Janorkar, A.V. & Hirt, D.E. 2010. Poly(lactic acid) modifications. Programe Polymer Science 35: 338-356.

Saljoughi, E., Amirilargani, M. & Mohammadi, T. 2010. Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes. Desalination 262: 72-78.

Shah, R.S.S. & Singh, P.K.K. 2004. Treatment of palm oil mill effluent (POME) using membrane technology. Symposium on Membrane Science and Technology. Universiti Teknologi Malaysia Institutional Repository. pp. 1-9.

Sheth, M., Kumar, R.A., Dave, V., Gross, R.A. & Mccarthy, S.P. 1997. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). Journal Application Polymer Science 66: 1495-1505.

Wong, C.S. & Badri, K.H. 2010. Sifat terma dan kerintangan api poliuretana berasaskan minyak isirung sawit dan minyak kacang soya. Sains Malaysiana 39(5): 775-784.

Yunos, M.Z., Harun, Z., Basri, H. & Ismail, A.F. 2012. Effects of water as non-solvent additive on performance of polysulfone ultrafiltration membrane. Advance Material Research 488- 489: 46-50.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.

Zuo, D.Y., Xub, Y.Y., Xua, W.L. & Zoua H.T. 2008. The influence of PEG molecular weight on morphologies and properties of PVDF asymmetric membranes. Chinese Journal of Polymer Science 26(4): 405-414.

 

 

*Corresponding author; email: farahhannan@ukm.edu.my

 

 

 

 

previous