Sains Malaysiana 47(6)(2018): 1293–1302

http://dx.doi.org/10.17576/jsm-2018-4706-26

 

Kesan Kandungan Fosfat Berbeza terhadap Pembentukan Morfologi Permukaan, Penghabluran, Fasa, Ikatan Kimia dan Kekuatan Mampatan Bio-kaca Sol-Gel Tersinter

(Effect of Different Phosphate Content towards the Surface Morphology Formation, Chemical Bond, Crystallization, Phase and Compressive Strength of Sintered Sol-Gel Bio-glass)

 

SYED NUZUL FADZLI SYED ADAM1*, ROSLINDA SHAMSUDIN1, FIRUZ ZAINUDDIN2

& MOHD REUSMAAZRAN YUSOF3

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan

Malaysia

 

3Material Technology Group, Industrial Technology Department, Malaysia Nuclear Agency

43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 12 October 2017/Accepted: 29 January 2018

 

 

ABSTRAK

Kajian ini bertujuan untuk mengkaji kesan kandungan fosfat berbeza (X = 10, 15 dan 20% mol) terhadap pembentukan morfologi permukaan, ikatan kimia, penghabluran, fasa dan kekuatan mampatan kaca sol-gel tersinter. Serbuk kaca gel dengan komposisi 50SiO2.(50-X).CaO.XP2O5 (dalam peratusan mol) disediakan melalui kaedah sol-gel, dimampat membentuk pelet dan disinter pada suhu 1200°C selama 3 jam. Didapati bahawa dengan peningkatan kandungan fosfat, mikrostruktur kaca tersinter yang lebih padat terhasil disebabkan peningkatan pemadatan jasad, pengurangan keliangan ketara dan pembentukan butiran dan sempadan butiran berhablur yang lebih besar. Peningkatan sebanyak 20% mol kandungan fosfat meningkatkan vitrifikasi (fasa kekaca) pada permukaan kaca tersinter yang mana meningkatkan pemadatan jasad kepada 83.56%, kekuatan mampatan pada 113 MPa dan penurunan peratusan penghabluran pada sekitar 66%. Analisis EDS menunjukkan peningkatan kandungan fosfat menyebabkan peningkatan unsur Si-O pada fasa amorfus dan unsur P-O pada fasa berhablur. Analisis FTIR menunjukkan berlaku pemisahan fasa kaya fosfat dan fasa kaya silikat dan pada masa sama meningkatkan rangkaian tetrahedra silikat (Si-O-Si) dan fosfat (P-O-P) kaca tersinter. Peningkatan kandungan fosfat meningkatkan kumpulan berfungsi berkaitan fosfat hablur dan mengurangkan kumpulan berfungsi berkaitan silikat hablur. Ini menyebabkan peningkatan pembentukan fasa silikokarnotit, Ca5 (PO4)2 (SiO4) dalam matriks kaca tersinter dengan peningkatan kandungan fosfat yang ditunjukkan melalui analisis XRD.

 

Kata kunci: Bio-kaca; fosfat; kaca tersinter; kekuatan mampatan; sol-gel

 

ABSTRACT

This research aimed to study the effect of different phosphate content (X=10, 15 and 20 mol %) towards the surface morphology formation, chemical bond, crystallization, phase and compressive strength of sintered sol-gel glass. Gel glass powder with composition of 50SiO2.(50-X)CaO.XP2O5 (in mol percent) was prepared via sol-gel method, compress into pellets and sintered at 1200°C for 3 h. It was found that, as phosphate content increased, denser microstructure of sintered glass was achieved due to enhanced body densification, less apparent porosities and formation of larger crystal grain and boundaries. Increased in 20% mol of phosphate content increased vitrification (glassy phase) on the sintered glass surface in which increased densifications to 83.56%, compressive strength at 113 MPa and reduced crystallinity percent at around 66%. EDS analysis showed, as phosphate content increased, Si-O elements at amorphous phase and P-O elements at crytallized phase were also increased. FTIR analysis showed that, a separation of phosphate rich phase and silicate rich phase is occured and at the same time increased the silicate (Si-O-Si) and phosphate (P-O-P) tetrahedral network of the sintered glass. Increased in phosphate content also increased the functional groups related with phosphate crystal and reduces the functional groups related to silicate crystal. This caused increased of silicocarnotite, Ca5 (PO4)2 (SiO4) phase formation in the sintered glass matrice as phosphate content increased as showed by XRD analysis.

 

Keywords: Bio-glass; compressive strength; phosphate; sintered glass; sol-gel

REFERENCES

Adams, L.A., Essien, E.R., Shaibu, R.O. & Oki, A. 2013. Sol-gel synthesis of SiO2-CaO-Na2O-P2O5 bioactive glass ceramic from sodium metasilicate. New Journal of Glass and Ceramics 3(1): 11-15.

Araújo, M., Miola, M., Baldi, G., Perez, J. & Verné, E. 2016. Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials 226(9): 1-15.

Arcos, D. & Vallet-regí, M. 2010. Sol–gel silica based biomaterials and bone tissue regeneration. Acta Biomaterialia 6(8): 2874-2888.

Bizari, D., Rabiee, M., Moztarzadeh, F., Tahriri, M., Alavi, S.H. & Masaeli, R. 2013. Synthesis, characterization and biological evaluation of sol–gel derived nanomaterial in the ternary syntem 64 % SiO2-31 % CaO-5% P2O5 as a bioactive glass: in vitro study. Ceramics - Silikaty 57(3): 201-209.

Bellucci, D., Cannillo, V. & Sola, A. 2010. An overview of the effects of thermal processing on bioactive glasses. Science of Sintering 42(3): 307-320.

Bernardo, E., Scarinci G. & Colombo P. 2012. Vitrification of waste and reuse of waste-derived glass. In Encyclopedia of Sustainability Science and Technology, edited by Meyers, R.A. New York: Springer.

Brovarone, C.V., Miola, M., Balagna, C. & Verne, E. 2008. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal 137(1): 129-136.

Catauro, M., Bollino, F., Renella, R.A. & Papale, F. 2015. Sol–gel synthesis of SiO2–CaO–P2O5 glasses: Influence of the heat treatment on their bioactivity and biocompatibility. Ceramics International 41(10): 12578-12588.

Chou, K.T. & Lee, B.I. 1992. Properties of silica gels prepared from high-acid hydrolysis of tetraethoxysilane. Ceramics International 19(5): 315-325.

Esfehani, F., Baghshaei, S., Asghar, A. & Ghader, B. 2013. The effects of CaO/P2O5 molar ratio changes on in vitro bioactivity of nanopowder glass via sol-gel in SiO2-CaO-P2O5 system. Basic and Applied Scientific Research 3(1s): 375-382.

Hannink, G. & Arts, J.J.C. 2011. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury 42: S22-S25.

Jones, J.R. 2013. Acta biomaterialia review of bioactive glass: From Hench to hybrids. Acta Biomaterialia 9(1): 4457-4486.

Juhasz, J.A. & Best, S.M. 2012. Bioactive ceramics: Processing, structures and properties. Journal of Material Science 47(2): 610-624.

Kim, C.Y., Clark, A.E. & Hench, L.L. 1992. Compositional dependence of calcium phosphate layer formation in fluoride Bioglasses. Journal of Biomedical Materials Research 26(9): 1147-1161.

Lefebvre, L., Gremillard, L., Chevalier, J., Zenati, R. & Bernache- Assolant, D. 2008. Sintering behaviour of 45S5 bioactive glass. Acta Biomaterialia 4(6): 1894-1903.

Lin, C.C., Chen, S.F., Leung, K.S. & Shen, P. 2012. Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2–CaO–Na2O–P2O5 bioglasses. Journal of Materials Science: Materials in Medicine 23(2): 245-258.

Lombardi, M., Gremillard, L., Chevalier, J., Lefebvre, L., Cacciotti, I., Bianco, A. & Montanaro, L. 2013. A comparative study between melt-derived and sol-gel synthesized 45S5 bioactive glasses. Key Engineering Materials 541: 15-30.

Ma, J., Chen, C.Z., Wang, D.G., Meng, X.G. & Shi, J.Z. 2010. Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceramics International 36(22): 1911-1916.

Mozafari, M., Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. Journal of Non-Crystalline Solids 356(28-30): 1470-1478.

Mukundan, L.M., Vaikkath, R.N.D. & Nair, P.D. 2013. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing. Biomatter 3(2): e24288- 1-e24288-10.

Oliveira, A.A.R., Souza, D.A., Dias, L.L.S., Carvalho, S., Sander, M.H., Magalh, D. & Pereira, M.M. 2013. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomedical Materials 8(2): 1050-1062.

Peitl, O., Dutra, E. & Hench, L.L. 2001. Highly bioactive P2O5. Na2O.CaO.SiO2 glass-ceramics. Non Crystalline Solids 292(1-3): 115-126.

Peitl, O., Zanotto, E.D., Serbena, F.C. & Hench, L.L 2012. Compositional and microstructural design of highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Acta Biomaterialia 8(1): 321-332.

Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F. & Tomsia, A.P. 2011. Acta biomaterialia bioactive glass in tissue engineering. Acta Biomaterialia 7(6): 2355-2373.

Radev, L., Hristov, V., Michailova, I., Fernandes, M.H.V. & Salvado, I.M.M. 2010. In vitro bioactivity of biphasic calcium phosphate silicate glass ceramic in CaO-SiO2-P2O5 system. Processing and Application of Ceramics 4(1): 15-24.

Rajendran, V., Devi, A.V.G., Azooz, M. & El-Batal, F.H. 2007. Physicochemical studies of phosphate based P2O5–Na2O– CaO–TiO2 glasses for biomedical applications. Journal of Non-Crystalline Solids 353(1): 77-84.

Ravarian, R., Wei, H. & Dehghani, F. 2011. Improving the bioactivity of bioglass/(PMMA-Co-MPMA) organic/ inorganic hybrid. 33rd Annual International Conference of the IEEE EMBS: 3593-3596.

Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M. & Karimi, M. 2009. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Materials Science and Engineering C 29(1): 335- 340.

Salinas, A.J., Martin, A.I. & Vallet-Regí, M. 2002. Bioactivity of three CaO-P2O5-SiO2 sol-gel glasses. Journal of Biomedical Materials Research 61(4): 524-532.

Thomas, A. & Bera, J. 2016. Crystallization and sintering behavior of glass-ceramic powder synthesized by sol-gel process. Journal of The Australian Ceramic Society Volume 52(2): 87-91.

Thonglem, S., Pengpat, K., Rujijanagul, G., Eitssayeam, S., Punyanitya, S. & Tunkasiri, T. 2010. Effects of CaO on properties of P2O5-CaO-Na2O glasses and glass ceramics. Journal of Metals, Materials and Minerals 20(3): 173-177.

Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M. & Mozafari, M. 2013. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed Research International 2013: Article ID. 465086.

Yang, X., Zhang, L., Chen, X., Sun, X., Yang, G., Guo, X. & Gou, Z. 2012. Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co- fi red porous glass ceramics. Journal of Non-Crystalline Solids 358(9): 1171-1179.

Zhao, S., Li, Y. & Li, D. 2010. Synthesis and in vitro bioactivity of CaO–SiO2–P2O5 mesoporous microspheres. Microporous and Mesoporous Materials 135(1-3): 67-73.

 

 

*Corresponding author; email: syed.nuzul@unimap. edu.my

 

 

 

previous