Sains Malaysiana 47(6)(2018): 1293–1302
http://dx.doi.org/10.17576/jsm-2018-4706-26
Kesan
Kandungan Fosfat Berbeza terhadap Pembentukan Morfologi Permukaan,
Penghabluran, Fasa, Ikatan Kimia dan Kekuatan Mampatan Bio-kaca Sol-Gel
Tersinter
(Effect
of Different Phosphate Content towards the Surface Morphology Formation,
Chemical Bond, Crystallization, Phase and Compressive Strength of Sintered
Sol-Gel Bio-glass)
SYED NUZUL FADZLI SYED ADAM1*, ROSLINDA SHAMSUDIN1, FIRUZ ZAINUDDIN2
& MOHD REUSMAAZRAN YUSOF3
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School of Materials
Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan
Malaysia
3Material Technology
Group, Industrial Technology Department, Malaysia Nuclear Agency
43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 12 October 2017/Accepted: 29 January 2018
ABSTRAK
Kajian ini bertujuan untuk mengkaji kesan kandungan fosfat berbeza
(X = 10, 15 dan 20% mol) terhadap pembentukan morfologi permukaan, ikatan
kimia, penghabluran, fasa dan kekuatan mampatan kaca sol-gel tersinter. Serbuk
kaca gel dengan komposisi 50SiO2.(50-X).CaO.XP2O5 (dalam
peratusan mol) disediakan melalui kaedah sol-gel, dimampat membentuk pelet dan
disinter pada suhu 1200°C selama 3 jam. Didapati bahawa
dengan peningkatan kandungan fosfat, mikrostruktur kaca tersinter yang lebih
padat terhasil disebabkan peningkatan pemadatan jasad, pengurangan keliangan ketara
dan pembentukan butiran dan sempadan butiran berhablur yang lebih besar. Peningkatan sebanyak 20% mol kandungan fosfat meningkatkan vitrifikasi (fasa
kekaca) pada permukaan kaca tersinter yang mana meningkatkan pemadatan jasad
kepada 83.56%, kekuatan mampatan pada 113 MPa dan penurunan peratusan
penghabluran pada sekitar 66%. Analisis EDS menunjukkan
peningkatan kandungan fosfat menyebabkan peningkatan unsur Si-O pada fasa
amorfus dan unsur P-O pada fasa berhablur. Analisis FTIR menunjukkan
berlaku pemisahan fasa kaya fosfat dan fasa kaya silikat dan pada masa sama meningkatkan rangkaian tetrahedra silikat (Si-O-Si) dan
fosfat (P-O-P) kaca tersinter. Peningkatan kandungan fosfat
meningkatkan kumpulan berfungsi berkaitan fosfat hablur dan mengurangkan kumpulan
berfungsi berkaitan silikat hablur. Ini menyebabkan peningkatan
pembentukan fasa silikokarnotit, Ca5 (PO4)2 (SiO4)
dalam matriks kaca tersinter dengan peningkatan kandungan fosfat yang
ditunjukkan melalui analisis XRD.
Kata kunci: Bio-kaca; fosfat; kaca tersinter; kekuatan mampatan;
sol-gel
ABSTRACT
This research aimed to study the effect of different phosphate
content (X=10, 15 and 20 mol %) towards the surface morphology formation,
chemical bond, crystallization, phase and compressive strength of sintered
sol-gel glass. Gel glass powder with composition of 50SiO2.(50-X)CaO.XP2O5 (in
mol percent) was prepared via sol-gel method, compress into pellets and
sintered at 1200°C for 3 h. It was found that, as phosphate content increased,
denser microstructure of sintered glass was achieved due to enhanced body densification, less apparent porosities and formation of
larger crystal grain and boundaries. Increased in 20% mol of phosphate content
increased vitrification (glassy phase) on the sintered glass surface in which
increased densifications to 83.56%, compressive strength at 113 MPa and reduced
crystallinity percent at around 66%. EDS analysis
showed, as phosphate content increased, Si-O elements at amorphous phase and
P-O elements at crytallized phase were also increased. FTIR analysis
showed that, a separation of phosphate rich phase and silicate rich phase is
occured and at the same time increased the silicate (Si-O-Si) and phosphate
(P-O-P) tetrahedral network of the sintered glass. Increased in phosphate
content also increased the functional groups related with phosphate crystal and
reduces the functional groups related to silicate crystal. This caused
increased of silicocarnotite, Ca5 (PO4)2 (SiO4)
phase formation in the sintered glass matrice as phosphate content increased as
showed by XRD analysis.
Keywords: Bio-glass; compressive strength;
phosphate; sintered glass; sol-gel
REFERENCES
Adams, L.A., Essien, E.R.,
Shaibu, R.O. & Oki, A. 2013. Sol-gel synthesis of SiO2-CaO-Na2O-P2O5 bioactive glass ceramic from sodium metasilicate. New Journal of
Glass and Ceramics 3(1): 11-15.
Araújo, M., Miola, M.,
Baldi, G., Perez, J. & Verné, E. 2016. Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials 226(9): 1-15.
Arcos, D. &
Vallet-regí, M. 2010. Sol–gel silica based biomaterials and bone tissue regeneration. Acta
Biomaterialia 6(8): 2874-2888.
Bizari, D., Rabiee, M.,
Moztarzadeh, F., Tahriri, M., Alavi, S.H. & Masaeli, R. 2013. Synthesis, characterization and biological
evaluation of sol–gel derived nanomaterial in the ternary syntem 64 % SiO2-31
% CaO-5% P2O5 as a bioactive glass: in vitro study. Ceramics - Silikaty 57(3): 201-209.
Bellucci, D., Cannillo, V.
& Sola, A. 2010. An overview of the effects of thermal processing on bioactive
glasses. Science of Sintering 42(3): 307-320.
Bernardo, E., Scarinci G. & Colombo P. 2012. Vitrification of waste and reuse of waste-derived glass. In Encyclopedia of Sustainability Science and Technology, edited by
Meyers, R.A. New York: Springer.
Brovarone, C.V., Miola, M., Balagna, C. & Verne, E. 2008. 3D-glass-ceramic scaffolds with
antibacterial properties for bone grafting. Chemical Engineering Journal 137(1):
129-136.
Catauro, M., Bollino, F., Renella, R.A.
& Papale, F. 2015. Sol–gel
synthesis of SiO2–CaO–P2O5 glasses: Influence of the heat treatment on their bioactivity and
biocompatibility. Ceramics International 41(10): 12578-12588.
Chou, K.T. & Lee, B.I. 1992. Properties of silica gels
prepared from high-acid hydrolysis of tetraethoxysilane. Ceramics
International 19(5): 315-325.
Esfehani, F., Baghshaei, S., Asghar, A.
& Ghader, B. 2013. The effects of CaO/P2O5 molar ratio changes on in vitro bioactivity of nanopowder glass via
sol-gel in SiO2-CaO-P2O5 system. Basic and Applied Scientific Research 3(1s): 375-382.
Hannink, G. & Arts, J.J.C. 2011. Bioresorbability,
porosity and mechanical strength of bone substitutes: What is optimal for bone
regeneration? Injury 42: S22-S25.
Jones, J.R. 2013. Acta biomaterialia review of bioactive
glass: From Hench to hybrids. Acta Biomaterialia 9(1): 4457-4486.
Juhasz, J.A. & Best, S.M. 2012. Bioactive ceramics:
Processing, structures and properties. Journal of Material Science 47(2):
610-624.
Kim, C.Y., Clark, A.E. & Hench,
L.L. 1992. Compositional
dependence of calcium phosphate layer formation in fluoride Bioglasses. Journal
of Biomedical Materials Research 26(9): 1147-1161.
Lefebvre, L., Gremillard, L., Chevalier, J., Zenati, R.
& Bernache- Assolant, D. 2008. Sintering behaviour of 45S5 bioactive glass. Acta Biomaterialia 4(6): 1894-1903.
Lin, C.C., Chen, S.F., Leung, K.S. & Shen, P. 2012. Effects of CaO/P2O5 ratio on the structure
and elastic properties of SiO2–CaO–Na2O–P2O5 bioglasses. Journal of Materials Science: Materials in Medicine 23(2):
245-258.
Lombardi, M., Gremillard, L.,
Chevalier, J., Lefebvre, L., Cacciotti, I., Bianco, A. & Montanaro, L.
2013. A comparative study between
melt-derived and sol-gel synthesized 45S5 bioactive glasses. Key Engineering
Materials 541: 15-30.
Ma, J., Chen, C.Z., Wang, D.G., Meng,
X.G. & Shi, J.Z. 2010. Influence of the sintering temperature on the structural feature and
bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceramics International 36(22): 1911-1916.
Mozafari, M., Moztarzadeh, F. &
Tahriri, M. 2010. Investigation of the physico-chemical
reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. Journal of Non-Crystalline Solids 356(28-30):
1470-1478.
Mukundan, L.M., Vaikkath, R.N.D. & Nair, P.D. 2013. A new synthesis route to high surface area sol gel bioactive glass
through alcohol washing. Biomatter 3(2): e24288- 1-e24288-10.
Oliveira, A.A.R., Souza, D.A., Dias, L.L.S., Carvalho, S., Sander,
M.H., Magalh, D. & Pereira, M.M. 2013. Synthesis,
characterization and cytocompatibility of spherical bioactive glass
nanoparticles for potential hard tissue engineering applications. Biomedical
Materials 8(2): 1050-1062.
Peitl, O., Dutra, E. & Hench, L.L. 2001. Highly bioactive P2O5. Na2O.CaO.SiO2 glass-ceramics. Non Crystalline Solids 292(1-3): 115-126.
Peitl, O., Zanotto, E.D., Serbena, F.C.
& Hench, L.L 2012. Compositional
and microstructural design of highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Acta Biomaterialia 8(1): 321-332.
Rahaman, M.N., Day, D.E., Bal, B.S.,
Fu, Q., Jung, S.B., Bonewald, L.F. & Tomsia, A.P. 2011. Acta biomaterialia bioactive glass in tissue engineering. Acta
Biomaterialia 7(6): 2355-2373.
Radev, L., Hristov, V., Michailova, I., Fernandes, M.H.V.
& Salvado, I.M.M. 2010. In vitro bioactivity of
biphasic calcium phosphate silicate glass ceramic in CaO-SiO2-P2O5 system. Processing and Application of Ceramics 4(1): 15-24.
Rajendran, V., Devi, A.V.G., Azooz, M.
& El-Batal, F.H. 2007. Physicochemical studies of phosphate based P2O5–Na2O–
CaO–TiO2 glasses for biomedical applications. Journal of
Non-Crystalline Solids 353(1): 77-84.
Ravarian, R., Wei, H. & Dehghani,
F. 2011. Improving the bioactivity of
bioglass/(PMMA-Co-MPMA) organic/ inorganic hybrid. 33rd Annual International
Conference of the IEEE EMBS: 3593-3596.
Saboori, A., Rabiee, M., Moztarzadeh,
F., Sheikhi, M., Tahriri, M. & Karimi, M. 2009. Synthesis, characterization and in vitro bioactivity
of sol-gel-derived SiO2–CaO–P2O5–MgO
bioglass. Materials Science and Engineering C 29(1): 335- 340.
Salinas, A.J., Martin, A.I. &
Vallet-Regí, M. 2002. Bioactivity
of three CaO-P2O5-SiO2 sol-gel glasses. Journal of Biomedical Materials Research 61(4): 524-532.
Thomas, A. & Bera, J. 2016. Crystallization
and sintering behavior of glass-ceramic powder synthesized by sol-gel process. Journal of The Australian Ceramic Society Volume 52(2): 87-91.
Thonglem, S., Pengpat, K., Rujijanagul,
G., Eitssayeam, S., Punyanitya, S. & Tunkasiri, T. 2010. Effects of CaO on properties of P2O5-CaO-Na2O
glasses and glass ceramics. Journal of Metals, Materials and Minerals 20(3): 173-177.
Touri, R., Moztarzadeh, F., Sadeghian,
Z., Bizari, D., Tahriri, M. & Mozafari, M. 2013. The use of carbon nanotubes to reinforce
45S5 bioglass-based scaffolds for tissue engineering applications. BioMed
Research International 2013: Article ID. 465086.
Yang, X., Zhang, L., Chen, X., Sun, X.,
Yang, G., Guo, X. & Gou, Z. 2012. Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co- fi red
porous glass ceramics. Journal of Non-Crystalline Solids 358(9):
1171-1179.
Zhao, S., Li, Y. & Li, D. 2010. Synthesis and in vitro bioactivity
of CaO–SiO2–P2O5 mesoporous microspheres. Microporous and Mesoporous Materials 135(1-3): 67-73.
*Corresponding
author; email: syed.nuzul@unimap. edu.my
|