Sains Malaysiana 47(6)(2018): 1327–1335
http://dx.doi.org/10.17576/jsm-2018-4706-30
Discrete
Hopfield Neural Network in Restricted Maximum k-Satisfiability Logic
Programming
(Rangkaian
Neural Hopfield Diskret dalam Pengaturcaraan Logik Maksimum
k-Kepuasan Terhad)
MOHD SHAREDUWAN
MOHD
KASIHMUDDIN1*, MOHD
ASYRAF
MANSOR2
&
SARATHA
SATHASIVAM1
1Pusat
Pengajian Sains Matematik, Universiti Sains Malaysia, 11800 USM,
Pulau Pinang
Malaysia
2Pusat
Pengajian Pendidikan Jarak Jauh, Universiti Sains Malaysia,
11800 USM, Pulau Pinang
Malaysia
Received:
19 August 2017/Accepted: 19 January 2018
ABSTRACT
Maximum k-Satisfiability (MAX-kSAT)
consists of the most consistent interpretation that generate the maximum number of satisfied clauses. MAX-kSAT is an important
logic representation in logic programming since not all combinatorial problem
is satisfiable in nature. This paper presents Hopfield Neural Network based on MAX-kSAT
logical rule. Learning of Hopfield Neural Network will be integrated with Wan
Abdullah method and Sathasivam relaxation method to obtain the correct final
state of the neurons. The computer simulation shows that MAX-kSAT
can be embedded optimally in Hopfield Neural Network.
Keywords: Hopfield Neural Network; Maximum k-Satisfiability; Wan Abdullah method
ABSTRAK
Maksimum k-Kepuasan
(MAX-kSAT)
terdiri daripada penyelesaian yang paling konsisten untuk menghasilkan
bilangan klausa yang betul secara maksimum. MAX-kSAT merupakan perwakilan logik yang penting
dalam pengaturcaraan logik kerana tidak semua masalah kombinatori
boleh dipuaskan. Artikel ini membentangkan
Rangkaian Neural
Hopfield berdasarkan peraturan logik MAX-kSAT. Pembelajaran Rangkaian Neural Hopfield akan diintegrasikan dengan kaedah Wan Abdullah dan kaedah
rehat Sathasivam untuk mendapatkan tahap akhir neuron yang betul.
Simulasi komputer menunjukkan bahawa MAX-kSAT boleh diintegrasi secara optimum dalam Rangkaian Neural Hopfield.
Kata kunci: Kaedah Wan Abdullah;
maksimum k-Kepuasan; Rangkaian Neural
Hopfield
REFERENCES
Abdul Rahman, N. 2017. Binomial
distribution of 2sat interpretation. Private Communication.
Alzaeemi, S.A., Sathasivam, S.,
Adebayo, S.A., Kasihmuddin, M.S.M. & Mansor, M.A. 2017. Kernel machine to doing logic programming in hopfield
network for solve non horn problem-3sat. MOJ Applied Bionics and
Biomechanics 1(1): 1-6.
Berg, J. & Järvisalo, M. 2015. Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artificial Intelligence 244:
110-142.
Borchers, B. & Furman, J. 1998. A two-phase exact
algorithm for MAX-SAT and weighted MAX-SAT problems. Journal of
Combinatorial Optimization 2(4): 299-306.
Bouhmala, N. 2016. A variable neighbourhood search structure based-genetic
algorithm for combinatorial optimisation problems. International Journal of
Intelligent Systems Technologies and Applications 15(2): 127-146.
Feige, U. & Goemans, M. 1995. Approximating the value of two power proof systems, with
applications to max 2sat and max dicut. In Theory of
Computing and Systems Proceedings, Third Israel Symposium. pp.
182-189.
Hamadneh, N., Sathasivam, S., Tilahun,
S.L. & Choon, O.H. 2012. Learning
logic programming in radial basis function network via genetic algorithm. Journal
of Applied Sciences 12(9): 840-847.
Hölldobler, S., Kalinke, Y. &
Störr, H.P. 1999. Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence 11(1):
45-58.
Hopfield, J.J. & Tank, D.W. 1985. Neural
computation of decisions in optimization problems. Biological
Cybernatics 52: 141-152.
Hopfield, J.J. 1982. Neural networks and
physical systems with emergent collective computational abilities. Proceedings
of the National Academy of Sciences 79(8): 2554-2558.
Imada, A. & Araki, K. 1998. What does the landscape of a
Hopfield associative memory look like? International
Conference on Evolutionary Programming. pp. 647-656.
Ionescu, L.M., Mazare, A.G. & Serban, G. 2010. VLSI
Implementation of an associative addressable memory based on Hopfield network
model. IEEE Semiconductor Conference 2: 499-502.
Kasihmuddin, M.S.M. & Sathasivam, S. 2016. Accelerating
activation function in higher order logic programming. Advance in Industrial
and Applied Mathematics: Proceedings of 23rd Malaysian National Symposium of
Mathematical Sciences (SKSM23) 1750: 030008-1–030008-6 https://doi.
org/10.1063/1.4954544.
Kasihmuddin, M.S.M., Mansor, M.A. & Sathasivam, S. 2017. Hybrid genetic algorithm in the Hopfield network for logic
satisfiability problem. Pertanika Journal of Science & Technology 25(1): 139-152.
Kowalski, R.A. 1979. Logic for Problem
Solving. New York: Elsevier Science Publishing,
Kumar, S. & Singh, M.P. 2010. Pattern
recall analysis of the Hopfield network with a genetic algorithm. Computer
and Mathematic with Applications 60: 1049-1057.
Layeb, A., Deneche, A.H. & Meshoul, S. 2010. A new artificial immune system for solving the maximum satisfiability
problem. In Trends in Applied Intelligent Systems.
Berlin, Heidelberg: Springer. pp. 136-142.
Liu, S. & de Melo, G. 2017. Should algorithms for random
sat and max-sat be different? AAAI. pp. 3915-3921.
Madsen, B.A. & Rossmanith, P. 2004. Maximum exact
satisfiability: NP-completeness proofs and exact algorithms. BRICS Report
Series 04(19): 1-20.
Mansor, M.A. & Sathasivam, S. 2016. Performance
analysis of activation function in higher order logic programming. Advance
in Industrial and Applied Mathematics: Proceedings of 23rd Malaysian National
Symposium of Mathematical Sciences (SKSM23) 1750: 030007-1–030007-7
https://doi. org/10.1063/1.4954543.
Mathias, A.C. & Rech, P.C. 2012. Hopfield neural
network: The Hyperbolic tangent and the piecewise-linear activation functions. Neural
Networks 34: 42-45.
Menaï, M.E.B. & Batouche, M.
2005. A backbone-based co-evolutionary heuristic for partial MAX-SAT.
In Artificial Evolution. Berlin Heidelberg: Springer. pp.
155-166.
Muezzinoglu, M.K., Guzelis, C. & Zurada, J.M. 2003. A new design method for the complex-valued multistate Hopfield
associative memory. IEEE Transactions on Neural Networks 14(4):
891-899.
Pinkas, G. & Dechter, R. 1995. Improving connectionist
energy minimization, J. Artif. Intell. Res. (JAIR) 3: 223-248.
Pinkas, G. 1991. Symmetric neural networks
and propositional logic satisfiability. Neural Computation 3(2):
282-291.
Pipatsrisawat, K., Palyan, A., Chavira,
M., Choi, A. & Darwiche, A. 2008. Solving
weighted Max-SAT problems in a reduced search space: A performance analysis. Journal
on Satisfiability, Boolean Modeling and Computation 4: 191- 217.
Raman, V., Ravikumar, B. & Rao,
S.S. 1998. A simplified NP-complete
MAXSAT problem. Information Processing Letters 65(1): 1-6.
Rojas, R. 1996. Neural Networks: A Systematic
Introduction. Berlin: Springer.
Santra, S., Quiroz, G., Ver Steeg, G.
& Lida, D.A. 2014. Max 2-sat with up to
108 qubits. New Journal of Physics 16(4): 045006.
Sathasivam, S. & Fen, N.P. 2013. Developing agent based
modelling for doing logic programming in Hopfield network. Applied
Mathematical Sciences 7(1): 23-35.
Sathasivam, S. & Velavan, M. 2014. Boltzmann Machine and Hyperbolic Activation Function in
Higher Order Network. Modern Applied Science 8(3): 140.
Sathasivam, S. & Wan Abdullah, A.T.W. 2007. Flatness of the energy landscape for horn clauses. Matematika 23: 147-156.
Sathasivam, S. 2008. Learning in the recurrent Hopfield network.
Computer Graphics, Imaging and Visualisation, CGIV'08. Fifth International Conference on IEEE.pp. 323-328.
Sathasivam, S. 2010. Upgrading logic programming in Hopfield
network. Sains Malaysiana 39(1): 115-118.
Sathasivam, S. 2011. Boltzmann machine and
new activation function comparison. Applied Mathematical Sciences 5(78):
3853-3860.
Sulehria, H.K. & Zhang, Y. 2007. Hopfield neural
networks: A survey. Proceedings of the 6th Conference on 6th WSEAS Int.
Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases. pp.
125-130.
Velavan, M., Yahya, Z.R., Abdul Halif, M.N. &
Sathasivam, S. 2016. Mean field theory in doing logic programming using
hopfield network. Modern Applied Science 10(1): 154-160.
Wan Abdullah, A.T.W. 1992. Logic programming on a neural network. International Journal of Intelligent Systems 7(6): 513-519.
Wan
Abdullah, A.T.W. 1993. The logic of neural networks. Physics
Letters A 176(3-4): 202-206.
Yannakakis,
M. 1994. On the approximation of maximum satisfiability. Journal of Algorithms 17(3): 475-502.
Zeng, X. & Martinez, T. 1999. A new relaxation procedure in the hopfield network for solving
optimization problems. Neural Processing Letters 10(3): 211-222.
Zhang, H., Hou, Y., Zhao, J., Wang, L., Xi, T. & Li, Y.
2017. Automatic welding quality classification for the spot
welding based on the hopfield associative memory neural network and chernoff
face description of the electrode displacement signal features. Mechanical
Systems and Signal Processing 85: 1035-1043.
*Corresponding
author; email: shareduwan@usm.my
|