Sains Malaysiana 47(7)(2018): 1599–1605 http://dx.doi.org/10.17576/jsm-2018-4707-31
Flow
and Heat Transfer in a Nanofluid Thin Film over an Unsteady Stretching Sheet
(Aliran
dan Pemindahan Haba dalam Filem Nipis Nanobendalir atas Kepingan Meregang Secara
tak Mantap)
R.C. AZIZ1, I. HASHIM2*
& S. ABBASBANDY3
1Faculty of Science & Technology Open
University Malaysia 50480 Kuala Lumpur, Federal Territory, Malaysia
2School of Mathematical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department of Mathematics, Imam Khomeini
International University, Ghazvin 34149-16818, Iran
Received: 11
September 2017/Accepted: 27 February 2018
ABSTRACT
This study analyzes the heat
transfer of a thin film flow on an unsteady stretching sheet in nanofluids.
Three different types of nanoparticles are considered; copper Cu, alumina Al2O3 and titania TiO2 with
water as the base fluid. The governing equations are simplified using
similarity transformations. The resulting coupled nonlinear differential
equations are solved by the Homotopy Analysis Method (HAM).
The analytical series solutions are presented and the numerical results
obtained are tabulated. In particular, it shows that the heat transfer rate
decreases when nanoparticles volume fraction increases.
Keywords: Heat transfer; nanofluids;
thin film flow
ABSTRAK
Kajian ini
menganalisis pemindahan haba bagi aliran filem nipis di atas kepingan meregang secara
tak mantap dalam nanobendalir. Tiga jenis nanozarah berbeza telah
dipertimbangkan; tembaga Cu, alumina Al2O3 dan titania TiO2 dengan
air sebagai bendalir asas. Persamaan menakluk dipermudahkan
dengan menggunakan persamaan penukaran. Persamaan pembeza
tidak linear berangkai yang terhasil diselesaikan melalui Kaedah Analisis
Homotopi (KAH). Siri penyelesaian analitik
ditunjukkan dan keputusan berangka yang diperoleh dijadualkan. Secara
khususnya ditunjukkan bahawa kadar pemindahan haba
menurun apabila isi padu pecahan nanozarah meningkat.
Kata
kunci: Aliran filem nipis; nanobendalir; permindahan haba
REFERENCES
Abel, M.S., Tawade, J. & Nandeppanavar, M.M. 2009. Effect of non-uniform heat source on MHD heat transfer in a liquid
film over an unsteady stretching sheet. International Journal of
Non-Linear Mechanics 44(9): 990-998.
Abu-Nada,
E. & Oztop, H.F. 2009. Effects of inclination angle on natural
convection in enclosures filled with Cu-water nanofluid. International
Journal of Heat and Fluid Flow 30(4): 669-678.
Andersson, H.I., Aarseth, J.B. &
Dandapat, B.S. 2000. Heat transfer in a liquid film on an unsteady stretching
surface. International Journal of Heat and Mass Transfer 43(1): 69-74.
Aziz, R.C. & Hashim, I. 2010. Liquid film on unsteady stretching sheet with general surface
temperature and viscous dissipation. Chinese Physics Letters 27(11):
110202.
Aziz, R.C., Hashim, I. & Abbasbandy,
S. 2012. Effects of thermocapillarity and thermal radiation on flow and heat
transfer in a thin liquid film on an unsteady stretching sheet. Mathematical
Problem Engineering 2012: 127320.
Aziz, R.C., Hashim, I. & Alomari,
A.K. 2011. Thin film flow and heat transfer on an unsteady stretching sheet
with internal heating. Meccanica 46(2): 349-357.
Brinkman, H.C. 1952. The
viscosity of concentrated suspensions and solutions. The Journal of
Chemial Physics 20: 571-581.
Choi, S.U.S. 1995. Enhancing thermal
conductivity of fluids with nanoparticles. The Proceeding of the 1995 ASME
International Mechanical Engineering Congress and Exposition, San
Francisco, USA, ASME, FED 231/MD 66: 99-105.
Dandapat, B.S., Singh, S.K. & Maity,
S. 2017. Thin film flow of bi-viscosity fluid over an unsteady stretching
sheet: An analytical solution. International Journal Mechanical Sciences 130:
367-374.
Hayat, T., Ambreen, S., Awais, M. &
Mesloub, S. 2012. Soret and Dufour effects for three-dimensional flow in a
viscoelastic fluid over a stretching surface. International Journal of Heat
and Mass Transfer 55: 2129-2136.
Liao, S.J. 2004. Beyond Perturbation:
Introduction to the Homotopy Analysis Method. Boca Raton: Chapman &
Hall. p. 31.
Liao, S.J. 2004. On the
homotopy analysis method for nonlinear problems. Applied Mathematics. and Computation 147: 449-513.
Liao, S.J. 2009. Notes on the homotopy
analysis method: Some definitions and theorems. Communications in. Nonlinear
Science and Numerical Simulation 14: 983-997.
Liu, I.C. & Andersson, H.I. 2008.
Heat transfer in a liquid film on an unsteady stretching sheet. International
Journal of Thermal Sciences 47(6): 766-772.
Maiga, S.E.B., Palm, S.J., Nguyen, C.T.,
Roy, G. & Galanis, N. 2005. Heat transfer enhancement by using nanofluids
in forced convection flows. International Journal of Heat and Fluid Flow 26(4):
530-546.
Maity, S., Ghatani, Y.
& Dandapat, B.S. 2016. Thermocapillary flow of a thin nanoliquid film over an unsteady stretching
sheet. Journal Heat Transfer 138(4): 042401.
Megahed, A.M. 2015. Effect of slip
velocity on Casson thin film flow and heat transfer due to unsteady stretching
sheet in presence of variable heat flux and viscous dissipation. Applied
Mathematics and Mechanics 36(10): 1273-1284.
Narayana, M. & Sibanda, P. 2012.
Laminar flow of nanoliquid film over an unsteady stretching sheet. International
Journal of Heat and Mass Transfer 55(25-26): 7552-7560.
Noor, N.F.M. & Hashim, I. 2010.
Thermocapillarity and magnetic field effects in a thin liquid film on an
unsteady stretching surface. International Journal of Heat and Mass Transfer 53(9-10): 2044-2051.
Noor, N.F.M., Abdulaziz, O. & Hashim,
I. 2010. MHD flow and heat transfer in a thin liquid film on an unsteady
stretching sheet by the homotopy analysis method. International Journal
Numerical Methods in Fluids 63(3): 357-373.
Oztop, H.F. & Abu-Nada, E. 2008.
Numerical study of natural convection in partially heated rectangular
enclosures filled with nanofluids. International Journal Heat Fluid Flow 29(5):
1326-1336.
Santra, A.K., Sen, S. & Chakraborty,
N. 2008. Study of heat transfer characteristics of copper-water nanofluid in a
differentially heated square cavity with different viscosity models. Journal
of Enhanced Heat Transfer 15: 273-287.
Tiwari, R.J. & Das, M.K. 2007. Heat
transfer augmentation in a two-sided lid-driven differentially heated square
cavity utilizing nanofluids. International Journal Heat and Mass Transfer 50:
2002-2018.
Vajravelu, K., Prasad, K.V. & Ng,
C.O. 2012. Unsteady flow and heat transfer in a thin film of Ostwald-de Waele
liquid over a stretching surface. Communication Nonlinear Science and
Numerical Simulation 17(11): 4163-4173.
Waheed, S.E. 2016. Flow and heat transfer
in a Maxwell liquid film over an unsteady stretching sheet in a porous medium
with radiation. SpringerPlus 5(1): 1061.
Wang, C. 2006. Analytic
solutions for a liquid film on an unsteady stretching surface. Heat
and Mass Transfer 42: 759-766.
Wang, C.Y. 1990. Liquid
film on an unsteady stretching surface. Quarterly of Applied
Mathematics 48: 601-610.
Xu, H., Pop, I. & You, X.C. 2013. Flow
and heat transfer in a nano-liquid film over an unsteady stretching surface. International
Journal Heat and Mass Transfer 60(1): 646- 652.
*Corresponding author; email: ishak_h@ukm.edu.my
|