Sains Malaysiana 47(8)(2018): 1675–1684

http://dx.doi.org/10.17576/jsm-2018-4708-06

 

Pengenalpastian dan Profil Pengekspresan Gen Biosintesis Asid Amino Yis Psikrofil, Glaciozyma antarctica

(Identification and Expression Profiles of Amino Acid Biosynthesis Genes from Psychrophilic Yeast, Glaciozyma antarctica)

 

IZWAN BHARUDIN1, RADZIAH ZOLKEFLI1, MOHD FAIZAL ABU BAKAR2, SHAZILAH KAMARUDDIN1, ROSLI MD. ILLIAS3, NAZALAN NAJIMUDIN4, NOR MUHAMMAD MAHADI2, FARAH DIBA ABU BAKAR1 & ABDUL MUNIR ABDUL MURAD1*

 

1Pusat Pengajian Biosains dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysia Genome Institute, Jalan Bangi Lama, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

3Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

4School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Received: 15 September 2017/Accepted: 12 April 2018

 

ABSTRAK

Mekanisme pengambilan dan penghasilan asid amino bagi mikroorganisma psikrofil yang bermandiri dan berpoliferasi pada persekitaran sejuk melampau masih belum difahami sepenuhnya. Objektif kajian ini ialah untuk mengenal pasti gen yang terlibat dalam penjanaan asid amino bagi yis psikrofil, Glaciozyma antarctica serta menentukan pengekspresan gen tersebut semasa kehadiran dan kekurangan asid amino dalam medium pertumbuhan. Pengenalpastian gen telah dilakukan melalui penjanaan penanda jujukan terekspres (ESTs) daripada dua perpustakaan cDNA yang dibina daripada sel yang dikultur dalam medium pertumbuhan kompleks dan medium pertumbuhan minimum tanpa asid amino. Sebanyak 3552 klon cDNA daripada setiap perpustakaan dipilih secara rawak untuk dijujuk menghasilkan 1492 transkrip unik (medium kompleks) dan 1928 transkrip unik (medium minimum). Analisis pemadanan telah mengenl pasti gen mengekod protein yang terlibat di dalam pengambilan asid amino bebas, biosintesis asid amino serta gen yang terlibat dengan kitar semula asid amino berdasarkan tapak jalan yang digunakan oleh yis model, Saccharomyces cerevisiae. Analisis pengekspresan gen menggunakan kaedah RT-qPCR menunjukkan pengekspresan gen mengekod protein yang terlibat di dalam pengambilan asid amino bebas iaitu permease adalah tinggi pada medium kompleks manakala pengekspresan kebanyakan gen mengekod protein yang terlibat dalam kitar semula dan biosintesis asid amino adalah tinggi di dalam medium minimum. Kesimpulannya, gen yang terlibat dalam penjanaan dan pengambilan asid amino bagi mikroorganisma psikrofil adalah terpulihara seperti mikroorganisma mesofil dan pengekspresan gen-gen ini adalah diaruh oleh kehadiran atau ketiadaan asid amino bebas pada persekitaran.

 

Kata kunci: Biosintesis asid amino; Glaciozyma antarctica; penanda jujukan terungkap; psikrofil

 

ABSTRACT

The mechanism of amino acid uptake and synthesis in the psychrophilic microorganism lives and proliferate in the extreme low-temperature environment is still not well understood. The aim of this study was to identify genes involved in amino acid generation for psychrophilic yeast, Glaciozyma antarctica and to determine their expression profiles when cells grow in media rich in amino acids or with limited amount of amino acids. The identification of genes was carried out by generating expressed sequence tags (EST) from two cDNA libraries generated from cells grown in complex growth medium and minimal growth medium without amino acids. A total of 3552 cDNA clones from each library was randomly picked and sequenced, generating 1492 unique transcripts (complex medium) and 1928 unique transcripts (minimal medium). Homology analyses have identified genes encoding proteins required for free amino acid uptake, biosynthesis of amino acids and recycling of amino acids based on the pathway used in the model yeast, Saccharomyces cerevisiae. Gene expression analysis by RT-qPCR showed that genes required for free amino acid uptake showed a higher expression profile in the complex medium, whereas the expression of most genes encode for proteins essential for biosynthesis and recycling of amino acids are higher in the minimal medium. In summary, genes that are involved in the generation and the uptake of amino acids for psychrophilic microorganism are conserved as in their mesophilic counterparts and the expression of these genes are regulated in the presence or absent of free amino acids in the surrounding.

 

Keywords: Amino acid biosynthesis; expressed sequence tag; Glaciozyma antarctica; psychrophiles

REFERENCES

Andréasson, C., Neve, E.P.A. & Ljungdah, P.O. 2004. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21: 193-199.

Bharudin, I., Zaki, N.Z., Bakar, F.D.A., Mahadi, N.M., Najimudin, N., Illias, R.M. & Murad, A.M.A. 2014. Comparison of RNA extraction methods for transcript analysis from the psychrophilic yeast, Glaciozyma antarctica. Malaysian Applied Biology 43: 71-79.

Boer, V.M., Amini, S. & Botstein, D. 2008. Influence of genotype and nutrition on survival and metabolism of starving yeast. Proceedings of the National Academy of Sciences of the United States of America 105: 6930-6935.

Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. & Robles, M. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.

Coutts, G., Thomas, G., Blakey, D. & Merrick, M. 2002. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. The EMBO Journal 21: 536-545.

D'Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C. & Gerday, C. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Reports 7: 385-389.

Ewing, B. & Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8(3): 186-194.

Finley, D., Ulrich, H.D., Sommer, T. & Kaiser, P. 2012. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192: 319-360.

Firdaus-Raih, M., Hashim, N.H.F., Bharudin, I., Abu Bakar, M.F., Huang, K.K., Alias, H., Lee, B.K.B., Mat Isa, M.N., Mat- Sharani, S., Sulaiman, S., Tay, L.J., Zolkefli, R., Muhammad Noor, Y., Law, D.S.N., Abdul Rahman, S.H., Md-Illias, R., Abu Bakar, F.D., Najimudin, N., Abdul Murad, A.M. & Mahadi, N.M. 2018. The Glaciozyma antarcticagenome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One 13: e0189947.

George, R.A. 2001. StackPACK clustering system. Briefings in Bioinformatics 2: 394-397.

Good, M.C., Zalatan, J.G. & Lim, W.A. 2011. Scaffold proteins: Hubs for controlling the flow of cellular information. Science 332: 680-686.

Gretzmeier, C., Eiselein, S., Johnson, G.R., Engelke, R., Nowag, H., Zarei, M., Küttner, V., Becker, A.C., Rigbolt, K.T.G., Høyer-Hansen, M., Andersen, J.S., Münz, C., Murphy, R.F. & Dengjel, J. 2017. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy 13: 1064-1075.

Hashim, N.H.F., Bharudin, I., Nguong, D.L.S., Higa, S., Bakar, F.D.A., Nathan, S., Rabu, A., Kawahara, H., Illias, R.M., Najimudin, N., Mahadi, N.M. & Murad, A.M.A. 2013. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17: 63-73.

Iraqui, I., Vissers, S., Bernard, F., de Craene, J.O., Boles, E., Urrestarazu, A. & André, B. 1999. Amino acid signaling in Saccharomyces cerevisiae: A permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Molecular and Cellular Biology 19: 989-1001.

Jørgensen, M.U., Bruun, M.B., Didion, T. & Kielland-Brandt, M.C. 1998. Mutations in five loci affecting GAP1- independent uptake of neutral amino acids in yeast. Yeast 14: 103-114.

Kitzing, K., Auweter, S., Amrhein, N. & Macheroux, P. 2004. Mechanism of chorismate synthase. Role of the two invariant histidine residues in the active site. Journal of Biological Chemistry 279(10): 9451-9461.

Klasson, H., Fink, G.R. & Ljungdahl, P.O. 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Molecular and Cellular Biology 19: 5405-5416.

Kohlhaw, G.B. 2003. Leucine biosynthesis in fungi: Entering metabolism through the back door. Microbiology and Molecular Biology Reviews 67: 1-15.

Lecker, S.H., Goldberg, A.L. & Mitch, W.E. 2006. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American Society of Nephrology 17: 1807-1819.

Maeda, H. & Dudareva, N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology 63: 73-105.

Moyer, C.L. & Morita, R.Y. 2007. Psychrophiles and Psychrotrophs. Encyclopedia of Life Science. New Jersey: John Wiley & Sons, Ltd. pp. 1-6.

Murad, A.M.A., Badrun, R., Shahabudin, S., Kamaruddin, S., Zairun, M.A., Khairuddin, F., Mahadi, N.M., Illias, R.M., Zainal, Z. & Bakar, F.D.A. 2013. Pengenalpastian dan pencirian gen Trichoderma virens UKM1 mengekod enzim terlibat dalam pencuraian kitin krustasea. Sains Malaysiana 42(6): 715-724.

Okamura, E. & Hirai, M.Y. 2017. Novel regulatory mechanism of serine biosynthesis associated with 3-phosphoglycerate dehydrogenase in Arabidopsis thaliana. Scientific Reports 7: 3533.

Payne, S.H. & Loomis, W.F. 2006. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryotic Cell 5: 272-276.

Petti, A.A., Crutchfield, C.A., Rabinowitz, J.D. & Botstein, D. 2011. Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America 108: E1089-E1098.

Schmidt, M.C., McCartney, R.R., Zhang, X., Tillman, T.S., Solimeo, H., Wölfl, S., Almonte, C. & Watkins, S.C. 1999. Std1 and Mth1 Proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Molecular and Cellular Biology 19: 4561-4571.

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O. Botstein, D. & Futcher, B. 1998. Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9: 3273-3297.

Springael, J.Y. & André, B. 1998. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Molecular Biology of the Cell 9: 1253-1263.

Stekel, D.J., Git, Y. & Falciani, F. 2000. The comparison of gene expression from multiple cDNA libraries. Genome Research 10: 2055-2061.

Sterky, F. & Lundeberg, J. 2000. Sequence analysis of genes and genomes. Journal of Biotechnology 76: 1-31.

Susko, E. & Roger, A.J. 2004. Estimating and comparing the rates of gene discovery and expressed sequence tag (EST) frequencies in EST surveys. Bioinformatics 20: 2279-2287.

Thevelein, J.M., Geladé, R., Holsbeeks, I., Lagatie, O., Popova, Y., Rolland, F., Stolz, F., Van de Velde, S., Van Dijck, P., Vandormael, P., Van Nuland, A., Van Roey, K., Van Zeebroeck, G. & Yan, B. 2005. Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochemical Society Transactions 33(1): 253-256.

Tang, C., Gong, M., Li, S. & Zhu, C. 2012. Construction of cDNA library of Aspergillus nigerH1 and screening of phosphate-dissolving related gene. Wei Sheng Wu Xue Bao 52(3): 311-317.

Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.G. & Wang, C.Y. 2012. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. International Journal of Clinical and Experimental Pathology 5: 726-738.

Wittenberg, C. & Reed, S.I. 2005. Cell cycle-dependent transcription in yeast: Promoters, transcription factors, and transcriptomes. Oncogene 24(17): 2746-2755.

Yin, H., Zhang, R., Xia, M., Bai, X., Mou, J., Zheng, Y. & Wang, M. 2017. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microbial Cell Factories 16(1): 109.

Zabriskie, T.M. & Jackson, M.D. 2000. Lysine biosynthesis and metabolism in fungi. Natural Product Reports 17(1): 85-97.

Zhang, P., Du, G., Zou, H., Chen, J., Xie, G., Shi, Z. & Zhou, J. 2016. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Scientific Reports 6: 20910.

 

 

*Corresponding author; email: munir@ukm.edu.my

 

 

 

 

previous