Sains Malaysiana 47(8)(2018): 1675–1684
http://dx.doi.org/10.17576/jsm-2018-4708-06
Pengenalpastian
dan Profil Pengekspresan Gen Biosintesis Asid Amino Yis Psikrofil, Glaciozyma antarctica
(Identification
and Expression Profiles of Amino Acid Biosynthesis Genes from Psychrophilic
Yeast, Glaciozyma antarctica)
IZWAN BHARUDIN1, RADZIAH ZOLKEFLI1, MOHD FAIZAL ABU BAKAR2, SHAZILAH KAMARUDDIN1, ROSLI MD. ILLIAS3, NAZALAN NAJIMUDIN4, NOR MUHAMMAD MAHADI2, FARAH DIBA ABU BAKAR1 & ABDUL MUNIR ABDUL MURAD1*
1Pusat
Pengajian Biosains dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysia
Genome Institute, Jalan Bangi Lama, 43000 Kajang, Selangor Darul Ehsan, Malaysia
3Department
of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti
Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
4School
of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
Received:
15 September 2017/Accepted: 12 April 2018
ABSTRAK
Mekanisme pengambilan dan penghasilan asid amino
bagi mikroorganisma psikrofil yang bermandiri dan berpoliferasi
pada persekitaran sejuk melampau masih belum difahami sepenuhnya. Objektif kajian ini ialah untuk mengenal pasti
gen yang terlibat dalam penjanaan asid amino bagi yis psikrofil,
Glaciozyma antarctica
serta menentukan pengekspresan gen tersebut semasa kehadiran
dan kekurangan asid amino dalam medium pertumbuhan. Pengenalpastian
gen telah dilakukan melalui penjanaan penanda jujukan terekspres
(ESTs) daripada dua perpustakaan
cDNA yang dibina daripada sel yang dikultur dalam medium
pertumbuhan kompleks dan medium pertumbuhan minimum tanpa asid amino.
Sebanyak 3552 klon cDNA daripada setiap perpustakaan dipilih secara rawak untuk
dijujuk menghasilkan 1492 transkrip unik (medium kompleks) dan 1928
transkrip unik (medium minimum). Analisis pemadanan telah mengenl
pasti gen mengekod protein yang terlibat di dalam pengambilan asid
amino bebas, biosintesis asid amino serta gen yang terlibat dengan
kitar semula asid amino berdasarkan tapak jalan yang digunakan oleh
yis model, Saccharomyces cerevisiae. Analisis pengekspresan
gen menggunakan kaedah RT-qPCR
menunjukkan pengekspresan gen mengekod protein yang
terlibat di dalam pengambilan asid amino bebas iaitu permease adalah
tinggi pada medium kompleks manakala pengekspresan kebanyakan gen
mengekod protein yang terlibat dalam kitar semula dan biosintesis
asid amino adalah tinggi di dalam medium minimum. Kesimpulannya, gen yang terlibat dalam penjanaan dan pengambilan
asid amino bagi mikroorganisma psikrofil adalah terpulihara seperti
mikroorganisma mesofil dan pengekspresan gen-gen ini adalah diaruh
oleh kehadiran atau ketiadaan asid amino bebas pada persekitaran.
Kata kunci: Biosintesis asid amino; Glaciozyma antarctica;
penanda jujukan terungkap; psikrofil
ABSTRACT
The mechanism of amino acid uptake and synthesis in the
psychrophilic microorganism lives and proliferate in the extreme
low-temperature environment is still not well understood. The aim of this study
was to identify genes involved in amino acid generation for psychrophilic
yeast, Glaciozyma antarctica and to determine their expression profiles
when cells grow in media rich in amino acids or with limited amount of amino
acids. The identification of genes was carried out by generating expressed
sequence tags (EST) from two cDNA libraries
generated from cells grown in complex growth medium and minimal growth medium
without amino acids. A total of 3552 cDNA clones from each library
was randomly picked and sequenced, generating 1492 unique transcripts (complex
medium) and 1928 unique transcripts (minimal medium). Homology analyses have
identified genes encoding proteins required for free amino acid uptake,
biosynthesis of amino acids and recycling of amino acids based on the pathway
used in the model yeast, Saccharomyces cerevisiae. Gene expression
analysis by RT-qPCR showed that genes required for
free amino acid uptake showed a higher expression profile in the complex
medium, whereas the expression of most genes encode for proteins essential for
biosynthesis and recycling of amino acids are higher in the minimal medium. In
summary, genes that are involved in the generation and the uptake of amino
acids for psychrophilic microorganism are conserved as in their mesophilic
counterparts and the expression of these genes are regulated in the presence or
absent of free amino acids in the surrounding.
Keywords: Amino acid biosynthesis; expressed
sequence tag; Glaciozyma antarctica;
psychrophiles
REFERENCES
Andréasson, C., Neve, E.P.A. &
Ljungdah, P.O. 2004. Four permeases
import proline and the toxic proline analogue azetidine-2-carboxylate into
yeast. Yeast 21: 193-199.
Bharudin, I., Zaki, N.Z., Bakar, F.D.A., Mahadi, N.M.,
Najimudin, N., Illias, R.M. & Murad, A.M.A. 2014. Comparison of RNA
extraction methods for transcript analysis from the psychrophilic yeast, Glaciozyma antarctica. Malaysian Applied Biology 43:
71-79.
Boer, V.M., Amini, S. & Botstein, D. 2008. Influence of
genotype and nutrition on survival and metabolism of starving yeast.
Proceedings of the National Academy of Sciences of the United
States of America 105: 6930-6935.
Conesa, A., Götz, S., García-Gómez,
J.M., Terol, J., Talón, M. & Robles, M. 2005. Blast2GO: A universal tool for annotation, visualization
and analysis in functional genomics research. Bioinformatics 21:
3674-3676.
Coutts, G., Thomas, G., Blakey, D.
& Merrick, M. 2002. Membrane
sequestration of the signal transduction protein GlnK by the ammonium
transporter AmtB. The EMBO Journal 21: 536-545.
D'Amico, S., Collins, T., Marx, J.C.,
Feller, G., Gerday, C. & Gerday, C. 2006. Psychrophilic microorganisms: Challenges for life. EMBO
Reports 7: 385-389.
Ewing, B. & Green, P. 1998. Base-calling of automated
sequencer traces using phred. II. Error probabilities. Genome Research 8(3):
186-194.
Finley, D., Ulrich, H.D., Sommer, T. & Kaiser, P. 2012. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192: 319-360.
Firdaus-Raih, M., Hashim, N.H.F., Bharudin, I., Abu Bakar,
M.F., Huang, K.K., Alias, H., Lee, B.K.B., Mat Isa, M.N., Mat- Sharani, S.,
Sulaiman, S., Tay, L.J., Zolkefli, R., Muhammad Noor, Y., Law, D.S.N., Abdul
Rahman, S.H., Md-Illias, R., Abu Bakar, F.D., Najimudin, N., Abdul Murad, A.M.
& Mahadi, N.M. 2018. The Glaciozyma antarcticagenome
reveals an array of systems that provide sustained responses towards
temperature variations in a persistently cold habitat. PLoS One 13:
e0189947.
George, R.A. 2001. StackPACK clustering
system. Briefings in Bioinformatics 2: 394-397.
Good, M.C., Zalatan, J.G. & Lim, W.A. 2011. Scaffold
proteins: Hubs for controlling the flow of cellular information. Science 332:
680-686.
Gretzmeier, C., Eiselein, S., Johnson,
G.R., Engelke, R., Nowag, H., Zarei, M., Küttner, V., Becker, A.C., Rigbolt,
K.T.G., Høyer-Hansen, M., Andersen, J.S., Münz, C., Murphy, R.F. & Dengjel,
J. 2017. Degradation of protein
translation machinery by amino acid starvation-induced macroautophagy. Autophagy 13: 1064-1075.
Hashim, N.H.F., Bharudin, I., Nguong, D.L.S., Higa, S.,
Bakar, F.D.A., Nathan, S., Rabu, A., Kawahara, H., Illias, R.M., Najimudin, N.,
Mahadi, N.M. & Murad, A.M.A. 2013. Characterization of Afp1, an antifreeze
protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17: 63-73.
Iraqui, I., Vissers, S., Bernard, F.,
de Craene, J.O., Boles, E., Urrestarazu, A. & André, B. 1999. Amino acid signaling in Saccharomyces cerevisiae: A
permease-like sensor of external amino acids and F-box protein Grr1p are
required for transcriptional induction of the AGP1 gene, which encodes a
broad-specificity amino acid permease. Molecular and Cellular Biology 19:
989-1001.
Jørgensen, M.U., Bruun, M.B., Didion, T. &
Kielland-Brandt, M.C. 1998. Mutations in five loci affecting
GAP1- independent uptake of neutral amino acids in yeast. Yeast 14:
103-114.
Kitzing, K., Auweter, S., Amrhein, N. & Macheroux, P.
2004. Mechanism of chorismate synthase. Role of the two invariant histidine residues in the active site. Journal of Biological Chemistry 279(10): 9451-9461.
Klasson, H., Fink, G.R. & Ljungdahl, P.O. 1999. Ssy1p
and Ptr3p are plasma membrane components of a yeast system that senses
extracellular amino acids. Molecular and Cellular Biology 19: 5405-5416.
Kohlhaw, G.B. 2003. Leucine biosynthesis in fungi: Entering
metabolism through the back door. Microbiology and Molecular Biology Reviews 67: 1-15.
Lecker, S.H., Goldberg, A.L. & Mitch, W.E. 2006. Protein
degradation by the ubiquitin–proteasome pathway in normal and disease
states. Journal of the American Society of Nephrology 17: 1807-1819.
Maeda, H. & Dudareva, N. 2012. The
shikimate pathway and aromatic amino acid biosynthesis in plants. Annual
Review of Plant Biology 63: 73-105.
Moyer, C.L. & Morita, R.Y. 2007. Psychrophiles and
Psychrotrophs. Encyclopedia of Life Science. New Jersey: John Wiley &
Sons, Ltd. pp. 1-6.
Murad, A.M.A., Badrun, R., Shahabudin,
S., Kamaruddin, S., Zairun, M.A., Khairuddin, F., Mahadi, N.M., Illias, R.M.,
Zainal, Z. & Bakar, F.D.A. 2013. Pengenalpastian dan pencirian gen Trichoderma virens UKM1 mengekod enzim
terlibat dalam pencuraian kitin krustasea. Sains Malaysiana 42(6):
715-724.
Okamura, E. & Hirai, M.Y. 2017. Novel regulatory
mechanism of serine biosynthesis associated with 3-phosphoglycerate
dehydrogenase in Arabidopsis thaliana. Scientific Reports 7:
3533.
Payne, S.H. & Loomis, W.F. 2006. Retention
and loss of amino acid biosynthetic pathways based on analysis of whole-genome
sequences. Eukaryotic Cell 5: 272-276.
Petti, A.A., Crutchfield, C.A., Rabinowitz,
J.D. & Botstein, D. 2011.
Survival of starving yeast is correlated with oxidative stress response
and nonrespiratory mitochondrial function. Proceedings of the
National Academy of Sciences of the United States of America 108:
E1089-E1098.
Schmidt, M.C., McCartney, R.R., Zhang, X., Tillman, T.S.,
Solimeo, H., Wölfl, S., Almonte, C. & Watkins, S.C. 1999. Std1 and Mth1
Proteins interact with the glucose sensors to control glucose-regulated gene
expression in Saccharomyces cerevisiae. Molecular and Cellular
Biology 19: 4561-4571.
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R.,
Anders, K., Eisen, M.B., Brown, P.O. Botstein, D. & Futcher, B. 1998.
Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Molecular Biology of the Cell 9:
3273-3297.
Springael,
J.Y. & André, B. 1998. Nitrogen-regulated ubiquitination
of the Gap1 permease of Saccharomyces cerevisiae. Molecular
Biology of the Cell 9: 1253-1263.
Stekel, D.J., Git, Y. & Falciani, F. 2000. The comparison of gene expression from multiple cDNA libraries. Genome Research 10: 2055-2061.
Sterky,
F. & Lundeberg, J. 2000. Sequence analysis of genes and genomes. Journal
of Biotechnology 76: 1-31.
Susko,
E. & Roger, A.J. 2004. Estimating and comparing the rates of gene discovery
and expressed sequence tag (EST) frequencies in EST surveys. Bioinformatics 20:
2279-2287.
Thevelein,
J.M., Geladé, R., Holsbeeks, I., Lagatie, O., Popova, Y., Rolland, F., Stolz,
F., Van de Velde, S., Van Dijck, P., Vandormael, P., Van Nuland, A., Van Roey,
K., Van Zeebroeck, G. & Yan, B. 2005. Nutrient sensing systems for rapid
activation of the protein kinase A pathway in yeast. Biochemical
Society Transactions 33(1): 253-256.
Tang, C., Gong, M., Li, S. & Zhu, C. 2012. Construction of cDNA library of Aspergillus nigerH1
and screening of phosphate-dissolving related gene. Wei Sheng Wu Xue Bao 52(3):
311-317.
Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.G. & Wang,
C.Y. 2012. The ubiquitin proteasome pathway (UPP) in the regulation of
cell cycle control and DNA damage repair and its implication in tumorigenesis. International
Journal of Clinical and Experimental Pathology 5: 726-738.
Wittenberg,
C. & Reed, S.I. 2005. Cell cycle-dependent transcription in yeast:
Promoters, transcription factors, and transcriptomes. Oncogene 24(17):
2746-2755.
Yin, H., Zhang, R., Xia, M., Bai, X., Mou, J., Zheng, Y.
& Wang, M. 2017. Effect of aspartic
acid and glutamate on metabolism and acid stress resistance of Acetobacter
pasteurianus. Microbial Cell Factories 16(1): 109.
Zabriskie,
T.M. & Jackson, M.D. 2000. Lysine biosynthesis and
metabolism in fungi. Natural Product Reports 17(1): 85-97.
Zhang, P., Du, G., Zou, H., Chen, J., Xie, G., Shi, Z. &
Zhou, J. 2016. Effects of three
permeases on arginine utilization in Saccharomyces cerevisiae. Scientific
Reports 6: 20910.
*Corresponding
author; email: munir@ukm.edu.my
|