Sains Malaysiana 47(8)(2018): 1701–1708
http://dx.doi.org/10.17576/jsm-2018-4708-09
Pembinaan
Penanda Molekul bagi Kultur Tisu Kelapa Sawit Prolifik
(Construction
of Molecule Markers for Prolific Oil Palm Tissue Culture)
SITI KHADIJAH A. KARIM1* & NIK MARZUKI SIDIK2
1Fakulti Sains Gunaan,
Universiti Teknologi MARA (UiTM) Jengka, 26400 Bandar Tun Razak, Jengka, Pahang
Darul Makmur, Malaysia
2Fakulti Industri Asas
Tani, Universiti Malaysia Kelantan Kampus Jeli, 17600 Jeli, Kelantan
Darul Naim, Malaysia
Received: 16 October 2017/Accepted: 26 April 2018
ABSTRAK
Penggunaan penanda DNA boleh mengurangkan masalah
dalam kultur tisu khususnya apabila diaplikasikan
semasa pemilihan pokok untuk kultur tisu. Oleh itu, penyelidikan ini dijalankan
bertujuan untuk membina penanda molekul bagi kultur tisu kelapa sawit prolifik dengan menggunakan teknik polimorfisme panjang
cebisan teramplifikasi (AFLP). Analisis AFLP dijalankan ke atas 20 klon kelapa sawit yang terbahagi kepada
tiga kelas iaitu klon tidak prolifik (10 jenis klon), klon normal (6 jenis
klon) dan klon prolifik (4 jenis klon). Kesemua klon
yang digunakan adalah daripada titisan sel yang berbeza. Sebanyak 25 kombinasi pencetus telah digunakan dalam analisis AFLP dan 13 daripada mereka memberikan corak amplifikasi polimorfisme. Daripada hasil ini, sebanyak 44 cebisan polimorfik telah dipencilkan dengan 33
cebisan adalah bagi klon tidak prolifik, 1 cebisan bagi normal dan 10 cebisan
bagi klon prolifik. Cebisan ini telah diklon ke dalam
plasmid, berjujukan dan seterusnya, analisis jujukan dijalankan. Sebanyak 36 cebisan polimorfik telah digunakan bagi kajian
seterusnya. Berdasarkan kepada jujukan yang diperoleh,
sepasang pencetus yang khusus kepada setiap cebisan telah dijana. Jangkaan julat saiz jalur DNA yang diamplifikasi bagi setiap
pencetus adalah antara 70 hingga 500 bp. Pasangan pencetus yang optimum diuji
ke atas 20 jenis klon kelapa sawit untuk mengesahkan penanda yang telah dibina.
Daripada 36 pasangan pencetus yang dibina, 2 pasang pencetus telah menunjukkan potensi untuk digunakan sebagai penanda kepada
kultur tisu kelapa sawit prolifik.
Kata kunci: AFLP; kelapa sawit; kultur tisu; penanda DNA
ABSTRACT
The use of DNA marker could minimize problems in
tissue culture especially when applied during the selection of plants for
tissue culture. Therefore, the aimed of this research was to develop molecular
markers for prolific oil palm tissue culture using amplified fragment length
polymorphism (AFLP) technique. AFLP analysis was carried out
upon 20 oil palm clones that have divided into three classes which are
non-prolific clone (10 types of clone), normal clone (6 types of clone) and
prolific clone (4 types of clone). All of the clones used were from different
cell line. There were 25 primer combinations used in the AFLP analysis
and 13 out of them have produced significant polymorphic amplification
patterns. From these results, 44 polymorphic DNA fragments
were isolated where 33 fragments for non-prolific clone, one fragment for
normal clone and 10 fragments for prolific clone. These fragments were cloned
into plasmid, sequenced and then sequence analysis was done. There were 36
polymorphic fragments have undergone the subsequent experiments. A pair of
specific primers for each fragment was designed based on their sequences. The
expected size of amplified DNA bands for each primer pair was
between 70 bp to 500 bp. The optimized primer pairs were tested to the 20 types
of oil palm clones in order to confirm the markers developed. From the 36
designated primers combinations, 2 pairs of the primers showed the potential to
be used as marker for prolific oil palm tissue culture.
Keywords: AFLP; DNA marker;
palm oil; tissue culture
REFERENCES
Breure, K. 2003. The search for yield in oil palm: Basic principles
in ‘The oil palm management for large and sustainable yields'.
Potash Institute of Canada and International Potash Institute.
pp. 59-98.
Corley, R.H.V. & Tinker, P.B. 2003. The
Oil Palm. Oxford: Blackwell Science.
Costa, R., Pereira, G., Garrido, I.,
Tavares-de-Sousa, M.M. & Espinosa, F. 2016. Comparison of RAPD, ISSR, and AFLP
molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.)
germplasm variations. PloS One 11(4): e0152972.
Hoffmann, M.P., Donough, C.R., Cook,
S.E., Myles, J.F., Lim, C.H., Lim, Y.L. & Cock, J. 2017. Yield gap analysis in oil palm: Framework development and
application in commercial operations in Southeast Asia. Agricultural Systems 151: 12-19.
Hossain, A.B.M.S., Imdadul, H., Mohammed, S.A., Nasir, A.I.
& Kamaludin, R. 2017. Callus cell proliferation and explants regeneration
using broccoli shoot tip in vitro culture. Biochemical
and antioxidant properties. British Journal of Applied Science &
Technology 13: 1-8.
Ikeuchi, M., Yoichi, O., Akira, I. & Keiko, S. 2016.
Plant regeneration: Cellular origins and molecular mechanisms. Development 143(9):
1442-1451.
Jouannic, S., Argout, X., Lechauve, F.,
Fizames, C., Borgel, A., Morcillo, F., Aberlenc-Bertossi, F., Duval, Y. &
Tregear, J. 2005. Analysis of expressed sequence tags
from oil palm (Elaies guineensis). FEBS Letters 579: 2709-2714.
Karam M.S. Ali, Ali M. Sabbour, Mohamed K. Khalil, Abdel-
Halim S. Aly & Amal F.M. Zein El Din. 2017. In vitro morphogenesis
of direct organs in date palm (Phoenix dactylifera L.) Siwy cv. International
Journal of Advances in Agricultural Science and Technology 4(2): 01-12.
Low, E.T.L., Tan, J.S., Chan, P.L., Boon, S.H., Wong, Y.L.,
Rozana, R., Ooi, L.C.L., Ma, L.S., Ong-Abdullah, M., Cheah, S.C.
& Rajinder, S.I.N.G.H. 2006. Developments toward the application
of DNA chip technology in oil palm tissue culture. Journal
of Oil Palm Research 18(Special Issue): 87-98.
Makowska, K., Marta, K., Sylwia, O.,
Janusz, Z., Andrzej, C. & Robert, K. 2017. Arabinogalactan proteins improve plant regeneration in
barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and
Organ Culture (PCTOC) 131(2): 247-257.
Meudt,
H.M. & Clarke, A.C. 2007. Almost forgotten or latest
practice? AFLP applications, analyses and advances. Trends in Plant Sciences 12(3): 106-117.
Murphy,
D.J. 2017. Recent scientific developments in genetic technologies: Implications
for future regulation of GMOs in developing countries. Genetically
Modified Organisms in Developing Countries. p. 13.
Orton,
T.J. 1980. Chromosome viability in tissue cultures and
regenerated plants of Horedum. Theor. Appl. Genet 56: 101-112.
Rajanaidu,
N. & Jalani, B.S. 1995. World-wide performance of
DXP planting materials and future prospects. In Proc. 1995 PORIM National
Oil Palm Conf.-Tech. pp. 1-29.
Reinert,
J. & Backs, D. 1968. Control of totipotency in plant cells growing in
vitro. Nature 220: 1340-1341.
Rice, T.B., Reid, R.K. & Gordon, P.N. 1979. Morphogenesis in Field Crops. New York: Hughes
Publications.
Roberts,
J., Siew, E.O., Ahmad, T.H., Zamzuri, I., Samsul, K.R., Wei, C.W., Chin, N.C.,
Sau, Y.K., Nuraziyan, A. & Norashikin, S. 2017. Clonal propagation. Dlm. Oil
Palm Breeding: Genetics and Genomics. Florida: CRC Press.
Sharp, W.R., Sondhal, M.R., Caldas, L.S. & Maraffa, S.B.
1980. The physiology of in vitro asexual
embryogenesis. Horticult. Rev. 2: 47-54.
Tan, Y.C., Ho, W.Y., Alitheen, N.B., Wong, M.Y. & Ho,
C.L. 2016. Cloning and expression of oil palm (Elaeis guineensis Jacq.) Type 2 ribosome inactivating protein in Escherichia coli. International Journal of Peptide Research and Therapeutics 22(1): 37-44.
Woittiez,
L.S., Mark, T.W., Maja, S., Meine, N. & Ken, E.G. 2017. Yield gaps in oil
palm: A quantitative review of contributing factors. European Journal of
Agronomy 83: 57-77.
*Corresponding
author; email: khadijahkarim@pahang.uitm.edu.my
|