Sains Malaysiana 47(8)(2018): 1731–1739
http://dx.doi.org/10.17576/jsm-2018-4708-12
Analisis
dan Penyaringan Data Lewah Interaksi Kelompok Bes Berikatan Hidrogen dalam
Struktur RNA 3-Dimensi
(Analysis
and Filtering for Redundant Data of Hydrogen-bonded Base Interaction Clusters
in RNA 3-Dimensional Structures)
HAZRINA YUSOF HAMDANI1,2 & MOHD FIRDAUS-RAIH1*
1Pusat Pengajian
Biosains dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institut Perubatan
dan Pergigian Termaju, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas,
Pulau Pinang, Malaysia
Received:
21 September 2017/Accepted: 15 March 2018
ABSTRAK
Susun atur 3-dimensi (3D) yang sama boleh disalah cerap sebagai berbeza
dari sudut penglihatan yang berlainan. Bagi makromolekul biologi,
permasalahan ini juga dihadapi oleh algoritma pencarian susun atur
3D. Keputusan hasil larian yang sama akan diperoleh berulang kali
(data lewah) kerana hasil tersebut boleh mempunyai susun atur jujukan
berbeza. Permasalahan ini tidak ditemui di dalam pencarian jujukan.
Dalam kajian ini, dua kaedah untuk menyaring data lewah tersebut
telah dibangunkan dan dibandingkan iaitu kod Prüfer (berasaskan
teori graf) dan kaedah saringan data lewah (dibangunkan secara khusus
untuk kajian). Model hasil carian pula adalah menggunakan COnnection
tables Graphs for Nucleic ACids (COGNAC)
bagi pencarian interaksi kelompok bes berikatan hidrogen. Perbandingan
yang dilakukan menunjukkan bahawa kaedah saringan data lewah mampu
untuk mengenal pasti dan menyaring antara 50.5% sehingga 80% data
lewah daripada hasil larian asal COGNAC berbanding kod Prüfer yang hanya mengenal pasti
dan menyaring 50% data lewah daripada hasil larian asal COGNAC.
Oleh itu, kaedah saringan data lewah telah diimplementasi ke dalam
COGNAC.
Selain itu, kaedah saringan data lewah ini juga boleh diguna pakai
untuk algoritma yang tidak bergantung kepada jujukan bagi pencarian
motif 3D dalam struktur protein.
Kata kunci: COGNAC; interaksi kelompok bes
berikatan hidrogen; motif 3D RNA
ABSTRACT
There is a tendency for 3-dimensional (3D) arrangements to appear
differently from different viewing angles. In biological macromolecules, this
is a problem that is also encountered by algorithms searching for 3D
arrangements. This results in the same output being retrieved repeatedly
because they are not considered redundant from different points of the search.
This is a problem that is not encountered for sequence level searches. In this
study, we developed two approaches to filter such redundant data that are the
Prüfer code (based on graph theory) and our own redundant data filtering
method. The search results model uses the COnnection tables Graphs for Nucleic
ACids (COGNAC) algorithm to search for clusters of bases that
are connected by hydrogen bonds. The comparison between the two methods showed
that the redundant data filtering method developed in this work was able to
identify and filter between 50.5% and 80% of the redundant data from the
original COGNAC results compared to the Prüfer code that
identified and filtered 50% of the redundant data from the original COGNAC results. This redundant data filtering method was then integrated
into the COGNAC computer program. Furthermore, the redundant data
filtering method can also be deployed to the results of other sequence
independent 3D search algorithms including those for protein 3D structures.
Keywords: COGNAC; hydrogen-bonded
base interactions clusters; 3D RNA
motive
REFERENCES
Appasamy, S.D., Hamdani, H.Y., Ramlan, E.I.
& Firdaus-Raih, M. 2015. InterRNA: A database of base interactions in RNA
structures. Nucleic Acids Research D1: D266-D271.
Burkard, M.E., Turner, D.H. & Tinoco Jr, I.
1999. Appendix 1: Structures of base pairs involving at least two hydrogen
bonds. In The RNA World. 2nd ed., edited by Gesteland, R.F. & Cech,
T. & Atkins, J.F. New York: Cold Spring Harbor Laboratory Press. pp.
675-680.
Cate, J.H., Gooding, A.R., Podell, E., Zhou, K.,
Golden, B.L., Kundrot, C.E., Cech, T.R. & Doudna, J.A. 1996. Crystal
structure of a group I ribozyme domain: Principles of RNA packing. Science 273(5282):
1678-1685.
Ferre-D’amare, A.R., Zhou, K. & Doudna, J.A.
1998. Crystal structure of a hepatitis delta virus ribozyme. Nature 395(6702):
567-574.
Firdaus-Raih, M., Hamdani, H.Y., Nadzirin, N.,
Ramlan, E.I., Willett, P. & Artymiuk, P.J. 2014. Cognac: A web server for
searching and annotating hydrogen-bonded base interactions in Rna
three-dimensional structures. Nucleic Acids Res. 42(Web Server issue):
W382-388.
Grigg, J.C. & Ke, A. 2013. Structural
determinants for geometry and information decoding of Trna by T box leader Rna. Structure 21(11): 2025-2032.
Hamdani, H.Y., Appasamy, S.D., Willett, P.,
Artymiuk, P.J. & Firdaus-Raih, M. 2012. Nassam: A server to search for and
annotate tertiary interactions and motifs in three-dimensional structures of
complex Rna molecules. Nucleic Acids Res. 40(Web Server issue): W35-41.
Hansen, J.L., Ippolito, J.A., Ban, N., Nissen,
P., Moore, P.B. & Steitz, T.A. 2002. The structures of four macrolide
antibiotics bound to the large ribosomal subunit. Molecular Cell 10(1):
117-128.
Jeffrey, G.A. & Saenger, W. 2012. Hydrogen
Bonding in Biological Structures. New York: Springer Science & Business
Media.
Leontis, N.B. & Westhof, E. 2001. Geometric
nomenclature and classification of Rna base pairs. RNA 7(04): 499-512.
Parlea, L.G., Sweeney, B.A., Hosseini-Asanjan,
M., Zirbel, C.L. & Leontis, N.B. 2016. The Rna 3d motif atlas:
Computational methods for extraction, organization and evaluation of Rna
motifs. Methods 103: 99-119.
Petrov, A.I., Zirbel, C.L. & Leontis, N.B.
2011. Webfr3d--a Server for finding, aligning and analyzing recurrent RNA 3D
Motifs. Nucleic Acids Research 39(Web Server issue): W50-55.
Petrov, A.S., Bernier, C.R., Gulen, B.,
Waterbury, C.C., Hershkovits, E., Hsiao, C., Harvey, S.C., Hud, N.V., Fox, G.E.
& Wartell, R.M. 2014. Secondary structures of rRNAs from all three domains
of life. PLoS One 9(2): e88222.
Pettersen, E.F., Goddard, T.D., Huang, C.C.,
Couch, G.S., Greenblatt, D.M., Meng, E.C. & Ferrin, T.E. 2004. UCSF Chimera
- A visualization system for exploratory research and analysis. Journal of
Computational Chemistry 25(13): 1605-1612.
Pley, H.W., Flaherty, K.M. & Mckay, D.B.
1994. Three-dimensional structure of a hammerhead ribozyme. Nature 372(6501):
68-74.
Rose, P.W., Prlić, A., Altunkaya, A., Bi,
C., Bradley, A.R., Christie, C.H., Costanzo, L.D., Duarte, J.M., Dutta, S.,
Feng, Z., Green, R.K., Goodsell, D.S., Hudson, B., Kalro, T., Lowe, R.,
Peisach, E., Randle, C., Rose, A.S., Shao, C., Tao, Y.P., Valasatava, Y.,
Voigt, M., Westbrook, J.D., Woo, J., Yang, H., Young, J.Y., Zardecki, C.,
Berman, H.M. & Burley, S.K. 2017. The RCSB protein data bank: Integrative
view of protein, gene and 3D structural information. Nucleic Acids Research 45(D1):
D271-D281.
Ruff, M., Krishnaswamy, S., Boeglin, M., Poterszman, A.,
Mitschler, A., Podjarny, A., Rees, B., Thierry, J.C. & Moras, D. 1991.
Class II aminoacyl transfer RNA synthetases: Crystal structure of yeast
aspartyl-tRNA synthetase complexed with tRNA (Asp). Science 252(5013):
1682- 1689.
*Corresponding
author; email: firdaus@mfrlab.org
|