Sains Malaysiana 47(8)(2018): 1787–1794

http://dx.doi.org/10.17576/jsm-2018-4708-17

 

Physicochemical and Structural Characterization of Surface Modified Electrospun PMMA Nanofibre

(Pencirian Fizikokimia dan Struktur bagi Permukaan Termodifikasi Elektroputaran Nanogentian PMMA)

 

RABIATUL ADAWIYAH RAZALI1, YOGESWARAN LOKANATHAN1, SHIPLU ROY CHOWDHURY1, AMINUDDIN SAIM2 & RUSZYMAH HAJI IDRUS1,3*

 

1Tissue Engineering Centre, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Jalan Yaa'cob Latiff, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Ear, Nose and Throat Consultant Clinic, KPJ Ampang Puteri Specialist Hospital, Jalan Mamanda 9, Taman Dato Ahmad Razali, 68000 Ampang, Selangor Darul Ehsan, Malaysia

 

3Department of Physiology, Universiti Kebangsaan Malaysia, Jalan Yaa'cob Latiff, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 8 January 2018/Accepted: 19 April 2018

 

ABSTRACT

 

Although electrospun poly(methyl methacrylate) (PMMA) may mimic structural features of extracellular matrix, its highly hydrophobic nature causes reduced cell attachment. This study analysed the physicochemical and structural changes of the surface modified PMMA nanofiber. The electrospun PMMA nanofibers (PM) were surface-treated as follows: PM alone, collagen coated-PM (PM-C), UV-irradiated PM (PM-UV), collagen coated UV-irradiated PM (PM-C-UV) and collagen coated-PM crosslinked with genipin (PM-C-GEN). They were subjected to scanning electron microscopy, Fourier transform infrared (FTIR), cell attachment analysis, X-ray photoelectron spectroscopy (XPS), atomic force microscopy and X-ray powder diffraction (XRD). The surface roughness was lower in PM-C-UV group compared to others. Based on FTIR results, all expected functional group were present in all groups. XPS result showed that there are changes in the mass concentration of UV-treated surfaces and in the collagen coated surfaces. All PM groups showed amorphous nature through XRD. UV irradiation and collagen coating were shown to increase PM’s functional groups and modify its surface, which contributed to the increased attachment of cells onto the inert PM scaffold. As conclusion, collagen coated UV irradiated PMMA provided a better surface for cell to attach hence are suitable to be used further as scaffold for in vitro model.

 

Keywords: Electrospun nanofiber; PMMA; scaffold; surface modification; UV irradiation

 

ABSTRAK

Walaupun elektroputaran poli(metil metakrilat) (PMMA) boleh memimik sifat struktur matriks ekstrasel, ia terlalu hidrofobik lantas menyebabkan pengurangan pelekatan sel. Kajian ini telah menganalisis perubahan fizikokimia dan strukur permukaan termodifikasi nanogentian PMMA. Permukaan terawat nanogentian PMMA (PM) yang telah dielektroputar terbahagi seperti berikut: PM sahaja, PM bersalut kolagen (PM-C), PM diradiasi dengan UV bersalut kolagen (PM-UV), dan PM bersalut kolagen disilang dengan genipin (PM-C-GEN). Antara analisis yang dijalankan adalah mikroskopi elektron penskanan (SEM), inframerah transformasi Fourier (FTIR), analisis pelekatan sel, spektroskopi fotoelektron sinar-X (XPS), mikroskopi daya atom (AFM) dan pembelauan sinar-X (XRD). Kekasaran permukaan kumpulan PM-C-UV adalah kurang berbanding dengan yang lain. Berdasarkan hasil FTIR, semua kumpulan berfungsi yang dijangka wujud dalam semua kumpulan. Keputusan XPS menunjukkan bahawa terdapat perubahan dalam kepekatan jisim pada permukaan yang telah di UV radiasi dan yang telah disalut kolagen. XRD analisis menunjukkan semua kumpulan PM mempunyai sifat amorf. Sinar UV dan salutan kolagen telah menyebabkan peningkatan di dalam kumpulan berfungsi PM lantas mengubah suai permukaannya dan menyebabkan peningkatan pelekatan sel dalam perancah PM yang lengai. Kesimpulannya, PMMA diradiasi dengan UV bersalut kolagen adalah permukaan yang lebih baik untuk pelekatan sel dan menjadikannya sesuai untuk digunakan sebagai perancah model in vitro.

 

Kata kunci: Elektroputaran nanogentian; PMMA; perancah; permukaan terubah; sinar UV

 

REFERENCES

 

Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N. & Rubini, K. 2002. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23(24): 4827-4832.

Braghirolli, D.I., Steffens, D., Quintiliano, K., Acasigua, G.A.X., Gamba, D., Fleck, R.A., Petzhold, C.L. & Pranke, P. 2014. The effect of sterilization methods on electronspun poly (lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials 102(4): 700-708.

Cui, H. & Sinko, P.J. 2012. The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Frontiers of Materials Science 6(1): 47-59.

Duan et al. (2016)

Duan, G., Zhang, C., Li, A., Yang, X., Lu, L. & Wang, X. 2008. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Research Letters 3(3): 118.

Englert, C., Blunk, T., Müller, R., von Glasser, S.S., Baumer, J., Fierlbeck, J., Heid, I.M., Nerlich, M. & Hammer, J. 2007. Bonding of articular cartilage using a combination of biochemical degradation and surface cross-linking. Arthritis Research & Therapy 9(3): R47.

Eve, S. & Mohr, J. 2009. Study of the surface modification of the PMMA by UV-radiation. Procedia Engineering 1(1): 237-240.

Feng, H., Zhang, L. & Zhu, C. 2013. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces 103: 530-537.

Goddard, J.M. & Hotchkiss, J.H. 2007. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science 32(7): 698-725.

Gongjian, B., Yunxuan, W. & Xingzhou, H. 1996. Surface modification of polyolefine by UV lightozone treatment. Journal of Applied Polymer Science 60: 2397-2402.

Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S. & Matsuura, T. 2006. Electrospun nanofibrous filtration membrane. Journal of Membrane Science 281(1-2): 581-586.

Gupta, P., Elkins, C., Long, T.E. & Wilkes, G.L. 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13): 4799-4810.

Kaczmarek, H. & Chaberska, H. 2009. AFM and XPS study of UV-irradiated poly (methyl methacrylate) films on glass and aluminum support. Applied Surface Science 255(13): 6729-6735.

Kasahara, T., Shoji, S. & Mizuno, J. 2012. Surface modification of polyethylene terephthalate (PET) by 172-nm excimer lamp. Transactions of The Japan Institute of Electronics Packaging 5(1): 47-54.

Ko, C.S., Wu, C.H., Huang, H.H. & Chu, I.M. 2007. Genipin cross-linking of type ii collagen-chondroitin sulfate-hyaluronan scaffold for articular cartilage therapy. Journal of Medical and Biological Engineering 27(1): 7-14.

Koo, G.H. & Jang, J.H. 2009. Hydrophilic modification of poly (ethylene oxide) by UV irradiation. Textile Coloration and Finishing 21(5): 16-20.

Lai, J.Y. 2012. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int. J. Mol. Sci. 13(9): 10970-10985.

Lee, Y.S. & Livingston Arinzeh, T. 2011. Electrospun nanofibrous materials for neural tissue engineering. Polymers 3(4): 413- 426.

Lien, S.M., Li, W.T. & Huang, T.J. 2008. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Materials Science and Engineering: C 28(1): 36-43.

Liu, Y., Ji, Y., Ghosh, K., Clark, R.A., Huang, L. & Rafailovich, M.H. 2009. Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J. Biomed. Mater. Res. A 90(4): 1092-1106.

Nie, H.Y., Walzak, M.J., Berno, B. & McIntyre, N.S. 1999. Atomic force microscopy study of polypropylene surfaces treated by uv and ozone exposure modification of morphology and adhesion force. Applied Surface Science 144: 627-632.

Oláh, A., Hillborg, H. & Vancso, G.J. 2005. Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): Adhesion studies by contact mechanics and mechanism of surface modification. Applied Surface Science 239(3): 410-423.

Olbrich, M., Punshon, G., Frischauf, I., Salacinski, H.J., Rebollar, E., Romanin, C., Seifalian, A.M. & Heitz, J. 2007. UV surface modification of a new nanocomposite polymer to improve cytocompatibility. Journal of Biomaterials Science, Polymer Edition 18(4): 453-468.

Pashkuleva, I., Marques, A.P., Vaz, F. & Reis, R.L. 2010. Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. Journal of Materials Science: Materials in Medicine 21(1): 21-32.

Pham, Q.P., Sharma, U. & Mikos, A.G. 2006. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering 12(5): 1197-1211.

Polini, A., Pagliara, S., Stabile, R., Netti, G.S., Roca, L., Prattichizzo, C., Gesualdo, L., Cingolani, R. & Pisignano, D. 2010. Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8): 1668.

Rabiatul, A.R., Lokanathan, Y., Rohaina, C.M., Chowdhury, S.R., Aminuddin, B.S. & Ruszymah, B.H.I. 2015. Surface modification of electrospun poly (methyl methacrylate) (PMMA) nanofibers for the development of in vitro respiratory epithelium model. Journal of Biomaterials Science, Polymer Edition 26(17): 1297-1311.

Reneker, D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49(10): 2387-2425.

Sheikh, F.A., Ju, H.W., Lee, J.M., Moon, B.M., Park, H.J., Lee, O.J., Kim, J.H., Kim, D.K. & Park, C.H. 2015. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnology, Biology and Medicine 11(3): 681-691.

Sill, T.J. & von Recum, H.A. 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29(13): 1989-2006.

Situma, C., Wang, Y., Hupert, M., Barany, F., McCarley, R.L. & Soper, S.A. 2005. Fabrication of DNA microarrays onto poly (methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Analytical Biochemistry 340(1): 123-135.

Son, S.R., Linh, N.T.B., Yang, H.M. & Lee, B.T. 2013. In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Science and Technology of Advanced Materials 14(1): 015009.

Song, W., So, S.K., Wang, D., Qiu, Y. & Cao, L. 2001. Angle dependent X-ray photoemission study on UV-ozone treatments of indium tin oxide. Applied Surface Science 177(3): 158-164.

Tang, L., Thevenot, P. & Hu, W. 2008. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry 8(4): 270-280.

Viswanath, V., Maity, S., Bochinski, J.R., Clarke, L.I. & Gorga, R.E. 2016. Enhanced crystallinity of polymer nanofibers without loss of nanofibrous morphology via heterogeneous photothermal annealing. Macromolecules 49(24): 9484-9492.

Wang, C., Lau, T.T., Loh, W.L., Su, K. & Wang, D.A. 2011. Cytocompatibility study of a natural biomaterial crosslinker- Genipin with therapeutic model cells. J. Biomed. Mater. Res. B Appl. Biomater. 97(1): 58-65.

Yoo, J.S., Kim, Y.J., Kim, S.H. & Choi, S.H. 2011. Study on genipin: A new alternative natural crosslinking agent for fixing heterograft tissue. Korean J. Thorac. Cardiovasc. Surg. 44(3): 197-207.

 

*Corresponding author; email: ruszyidrus@gmail.com

 

 

 

 

 

previous