Sains Malaysiana 47(8)(2018): 1787–1794
http://dx.doi.org/10.17576/jsm-2018-4708-17
Physicochemical
and Structural Characterization of Surface Modified Electrospun
PMMA Nanofibre
(Pencirian
Fizikokimia dan Struktur bagi Permukaan Termodifikasi Elektroputaran
Nanogentian PMMA)
RABIATUL ADAWIYAH RAZALI1, YOGESWARAN LOKANATHAN1, SHIPLU ROY CHOWDHURY1, AMINUDDIN SAIM2 & RUSZYMAH HAJI IDRUS1,3*
1Tissue
Engineering Centre, Universiti Kebangsaan Malaysia (UKM) Medical
Centre, Jalan Yaa'cob Latiff, 56000 Cheras, Kuala Lumpur, Federal
Territory, Malaysia
2Ear,
Nose and Throat Consultant Clinic, KPJ Ampang Puteri Specialist Hospital, Jalan
Mamanda 9, Taman Dato Ahmad Razali, 68000 Ampang, Selangor Darul Ehsan, Malaysia
3Department
of Physiology, Universiti Kebangsaan Malaysia, Jalan Yaa'cob Latiff,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received:
8 January 2018/Accepted: 19 April 2018
ABSTRACT
Although electrospun poly(methyl methacrylate) (PMMA)
may mimic structural features of extracellular matrix, its highly
hydrophobic nature causes reduced cell attachment. This study analysed
the physicochemical and structural changes of the surface modified
PMMA nanofiber.
The electrospun PMMA nanofibers (PM)
were surface-treated as follows: PM alone, collagen coated-PM
(PM-C),
UV-irradiated
PM
(PM-UV), collagen coated UV-irradiated
PM
(PM-C-UV) and collagen coated-PM
crosslinked with genipin (PM-C-GEN). They were subjected to scanning electron microscopy,
Fourier transform infrared (FTIR), cell attachment analysis,
X-ray photoelectron spectroscopy (XPS),
atomic force microscopy and X-ray powder diffraction (XRD).
The surface roughness was lower in PM-C-UV group compared to others.
Based on FTIR results, all expected functional
group were present in all groups. XPS result showed that there are
changes in the mass concentration of UV-treated surfaces and in the
collagen coated surfaces. All PM groups showed amorphous nature
through XRD. UV irradiation
and collagen coating were shown to increase PM’s
functional groups and modify its surface, which contributed to the
increased attachment of cells onto the inert PM scaffold. As conclusion, collagen
coated UV irradiated PMMA provided
a better surface for cell to attach hence are suitable to be used
further as scaffold for in vitro model.
Keywords: Electrospun nanofiber; PMMA;
scaffold; surface modification; UV irradiation
ABSTRAK
Walaupun elektroputaran poli(metil metakrilat) (PMMA)
boleh memimik sifat struktur matriks ekstrasel, ia terlalu hidrofobik
lantas menyebabkan pengurangan pelekatan sel. Kajian ini telah menganalisis
perubahan fizikokimia dan strukur permukaan termodifikasi nanogentian
PMMA.
Permukaan terawat nanogentian PMMA (PM)
yang telah dielektroputar terbahagi seperti berikut: PM sahaja,
PM
bersalut kolagen (PM-C), PM diradiasi
dengan UV bersalut kolagen (PM-UV),
dan PM bersalut kolagen disilang dengan genipin (PM-C-GEN).
Antara analisis yang dijalankan adalah mikroskopi elektron penskanan
(SEM),
inframerah transformasi Fourier (FTIR), analisis pelekatan sel,
spektroskopi fotoelektron sinar-X (XPS), mikroskopi daya atom (AFM)
dan pembelauan sinar-X (XRD). Kekasaran permukaan kumpulan PM-C-UV
adalah kurang berbanding dengan yang lain. Berdasarkan
hasil FTIR,
semua kumpulan berfungsi yang dijangka wujud dalam semua kumpulan.
Keputusan XPS
menunjukkan bahawa terdapat perubahan dalam kepekatan
jisim pada permukaan yang telah di UV
radiasi dan yang telah disalut kolagen. XRD analisis menunjukkan semua
kumpulan PM mempunyai sifat amorf. Sinar UV dan
salutan kolagen telah menyebabkan peningkatan di dalam kumpulan
berfungsi PM lantas mengubah suai permukaannya dan menyebabkan peningkatan
pelekatan sel dalam perancah PM yang lengai. Kesimpulannya, PMMA
diradiasi dengan UV bersalut kolagen adalah permukaan
yang lebih baik untuk pelekatan sel dan menjadikannya sesuai untuk
digunakan sebagai perancah model in vitro.
Kata kunci: Elektroputaran nanogentian; PMMA; perancah; permukaan terubah; sinar UV
REFERENCES
Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N. & Rubini,
K. 2002. Stabilization of gelatin films by crosslinking with genipin.
Biomaterials 23(24): 4827-4832.
Braghirolli, D.I., Steffens, D., Quintiliano, K., Acasigua,
G.A.X., Gamba, D., Fleck, R.A., Petzhold, C.L. & Pranke, P.
2014. The effect of sterilization methods on electronspun poly (lactide-co-glycolide)
and subsequent adhesion efficiency of mesenchymal stem cells. Journal
of Biomedical Materials Research Part B: Applied Biomaterials
102(4): 700-708.
Cui, H. & Sinko, P.J. 2012. The role of crystallinity on
differential attachment/proliferation of osteoblasts and fibroblasts on poly
(caprolactone-co-glycolide) polymeric surfaces. Frontiers of Materials
Science 6(1): 47-59.
Duan et al. (2016)
Duan, G., Zhang, C., Li, A., Yang, X., Lu, L. & Wang, X.
2008. Preparation and characterization of mesoporous zirconia made by using a
poly (methyl methacrylate) template. Nanoscale Research Letters 3(3):
118.
Englert, C., Blunk, T., Müller, R., von Glasser, S.S.,
Baumer, J., Fierlbeck, J., Heid, I.M., Nerlich, M. & Hammer, J. 2007.
Bonding of articular cartilage using a combination of biochemical degradation
and surface cross-linking. Arthritis Research & Therapy 9(3): R47.
Eve, S. & Mohr, J. 2009. Study of the surface
modification of the PMMA by UV-radiation. Procedia Engineering 1(1):
237-240.
Feng, H., Zhang, L. & Zhu, C. 2013. Genipin crosslinked
ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids
Surf B Biointerfaces 103: 530-537.
Goddard, J.M. & Hotchkiss, J.H. 2007. Polymer surface
modification for the attachment of bioactive compounds. Progress in Polymer
Science 32(7): 698-725.
Gongjian, B., Yunxuan, W. & Xingzhou, H. 1996. Surface
modification of polyolefine by UV lightozone treatment. Journal of Applied
Polymer Science 60: 2397-2402.
Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S. &
Matsuura, T. 2006. Electrospun nanofibrous filtration membrane. Journal of
Membrane Science 281(1-2): 581-586.
Gupta, P., Elkins, C., Long, T.E. & Wilkes, G.L. 2005.
Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring
relationships between fiber formation, viscosity, molecular weight and
concentration in a good solvent. Polymer 46(13): 4799-4810.
Kaczmarek, H. & Chaberska, H. 2009. AFM and XPS study of
UV-irradiated poly (methyl methacrylate) films on glass and aluminum support. Applied
Surface Science 255(13): 6729-6735.
Kasahara, T., Shoji, S. & Mizuno, J. 2012. Surface
modification of polyethylene terephthalate (PET) by 172-nm excimer lamp. Transactions
of The Japan Institute of Electronics Packaging 5(1): 47-54.
Ko, C.S., Wu, C.H., Huang, H.H. & Chu, I.M. 2007.
Genipin cross-linking of type ii collagen-chondroitin sulfate-hyaluronan
scaffold for articular cartilage therapy. Journal of Medical and Biological
Engineering 27(1): 7-14.
Koo, G.H. & Jang, J.H. 2009. Hydrophilic modification of
poly (ethylene oxide) by UV irradiation. Textile Coloration and Finishing 21(5):
16-20.
Lai, J.Y. 2012. Biocompatibility of genipin and
glutaraldehyde cross-linked chitosan materials in the anterior chamber of the
eye. Int. J. Mol. Sci. 13(9): 10970-10985.
Lee, Y.S. & Livingston Arinzeh, T. 2011. Electrospun nanofibrous
materials for neural tissue engineering. Polymers 3(4): 413-
426.
Lien, S.M., Li, W.T. & Huang, T.J. 2008.
Genipin-crosslinked gelatin scaffolds for articular cartilage tissue
engineering with a novel crosslinking method. Materials Science and
Engineering: C 28(1): 36-43.
Liu, Y., Ji, Y., Ghosh, K., Clark, R.A., Huang, L. &
Rafailovich, M.H. 2009. Effects of fiber orientation and diameter on the
behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J.
Biomed. Mater. Res. A 90(4): 1092-1106.
Nie, H.Y., Walzak, M.J., Berno, B. & McIntyre, N.S. 1999.
Atomic force microscopy study of polypropylene surfaces treated
by uv and ozone exposure modification of morphology and adhesion
force. Applied Surface Science 144: 627-632.
Oláh, A., Hillborg, H. & Vancso, G.J. 2005. Hydrophobic
recovery of UV/ozone treated poly (dimethylsiloxane): Adhesion studies
by contact mechanics and mechanism of surface modification. Applied
Surface Science 239(3): 410-423.
Olbrich, M., Punshon, G., Frischauf, I., Salacinski, H.J.,
Rebollar, E., Romanin, C., Seifalian, A.M. & Heitz, J. 2007. UV surface
modification of a new nanocomposite polymer to improve cytocompatibility. Journal
of Biomaterials Science, Polymer Edition 18(4): 453-468.
Pashkuleva, I., Marques, A.P., Vaz, F. & Reis, R.L.
2010. Surface modification of starch based biomaterials by oxygen plasma or
UV-irradiation. Journal of Materials Science: Materials in Medicine 21(1):
21-32.
Pham, Q.P., Sharma, U. & Mikos, A.G. 2006. Electrospinning
of polymeric nanofibers for tissue engineering applications: A review.
Tissue Engineering 12(5): 1197-1211.
Polini, A., Pagliara, S., Stabile, R., Netti, G.S., Roca,
L., Prattichizzo, C., Gesualdo, L., Cingolani, R. & Pisignano, D. 2010.
Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8): 1668.
Rabiatul, A.R., Lokanathan, Y., Rohaina, C.M., Chowdhury, S.R.,
Aminuddin, B.S. & Ruszymah, B.H.I. 2015. Surface modification
of electrospun poly (methyl methacrylate) (PMMA) nanofibers for
the development of in vitro respiratory epithelium model.
Journal of Biomaterials Science, Polymer Edition 26(17):
1297-1311.
Reneker, D.H. & Yarin, A.L. 2008. Electrospinning jets
and polymer nanofibers. Polymer 49(10): 2387-2425.
Sheikh, F.A., Ju, H.W., Lee, J.M., Moon, B.M., Park, H.J.,
Lee, O.J., Kim, J.H., Kim, D.K. & Park, C.H. 2015. 3D electrospun silk
fibroin nanofibers for fabrication of artificial skin. Nanomedicine:
Nanotechnology, Biology and Medicine 11(3): 681-691.
Sill,
T.J. & von Recum, H.A. 2008. Electrospinning: Applications in drug delivery
and tissue engineering. Biomaterials 29(13): 1989-2006.
Situma,
C., Wang, Y., Hupert, M., Barany, F., McCarley, R.L. & Soper, S.A. 2005.
Fabrication of DNA microarrays onto poly (methyl methacrylate) with ultraviolet
patterning and microfluidics for the detection of low-abundant point mutations. Analytical Biochemistry 340(1): 123-135.
Son,
S.R., Linh, N.T.B., Yang, H.M. & Lee, B.T. 2013. In vitro and in
vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone
regeneration. Science and Technology of Advanced Materials 14(1):
015009.
Song,
W., So, S.K., Wang, D., Qiu, Y. & Cao, L. 2001. Angle dependent X-ray
photoemission study on UV-ozone treatments of indium tin oxide. Applied
Surface Science 177(3): 158-164.
Tang,
L., Thevenot, P. & Hu, W. 2008. Surface chemistry influences implant
biocompatibility. Current Topics in Medicinal Chemistry 8(4): 270-280.
Viswanath,
V., Maity, S., Bochinski, J.R., Clarke, L.I. & Gorga, R.E. 2016. Enhanced
crystallinity of polymer nanofibers without loss of nanofibrous morphology via
heterogeneous photothermal annealing. Macromolecules 49(24): 9484-9492.
Wang,
C., Lau, T.T., Loh, W.L., Su, K. & Wang, D.A. 2011. Cytocompatibility study
of a natural biomaterial crosslinker- Genipin with therapeutic model cells. J.
Biomed. Mater. Res. B Appl. Biomater. 97(1): 58-65.
Yoo,
J.S., Kim, Y.J., Kim, S.H. & Choi, S.H. 2011. Study on genipin: A new
alternative natural crosslinking agent for fixing heterograft tissue. Korean
J. Thorac. Cardiovasc. Surg. 44(3): 197-207.
*Corresponding
author; email: ruszyidrus@gmail.com
|