Sains Malaysiana 47(8)(2018): 1853–1860

http://dx.doi.org/10.17576/jsm-2018-4708-25

 

Evaluation of Kenaf Yarn Properties as Affected by Different Linear Densities for Woven Fabric Laminated Composite Production

(Kajian ke atas Sifat Benang Kenaf Kesan daripada Perbezaan Ketumpatan Linear untuk Penghasilan Fabrik Tenunan Komposit Berlaminasi)

 

AISYAH HUMAIRA ALIAS1*, PARIDAH MD. TAHIR1, KHALINA ABDAN2, MOHD SAPUAN SALIT3, MD. SAIDIN WAHAB4 & MOHD PAHMI SAIMAN5

 

1Institute of Tropical Forestry and Forest Product (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Biocomposite Technology, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

4Faculty of Mechanical Engineering, Universiti Tun Hussien Onn Malaysia (UTHM), 86400 Batu Pahat, Johor Darul Takzim, Malaysia

 

5Politeknik Seberang Perai (PSP), Jalan Permatang Pauh, 13500, Permatang Pauh, Pulau Pinang, Malaysia

 

Received: 29 May 2017/Accepted: 14 April 2018

 

ABSTRACT

Currently, there is a growing interest of using woven material in composite production for many applications such as structural applications, non-structural applications, household utilities, parts for automobile, aerospace components, flooring and ballistic laminate composites. The structure and properties of the woven fabric is very important as it dictate the woven composite properties. The properties of yarn like linear density, twist factor and strength can influence most of the woven fabric properties. Strength of woven fabric is one of the most important properties which make it superior in final composite applications. In this study, the effects of linear density i.e. 500, 1000, 1500 and 2000 tex on physical and mechanical properties of kenaf yarn were evaluated. The assessment on twist type, twist angle, yarn diameter, yarn structure, fibre density, moisture content, water absorption and mechanical properties were carried out on kenaf yarns. The yarn mechanical properties were tested on the tensile strength, Young's Modulus and elongation. It was found that, different linear density of yarn exhibited different behavior of yarn properties. Higher linear density yarn produced wider yarn diameter compared to lower linear density yarn, resulting to higher fibre and moisture content yarn. Yarn tensile strength has increased by 46% when linear density was changed from 500 to 2000 tex due to higher amount of individual fibres. However, for Young's Modulus, the values reduced as the yarn linear density increased due to several factors including number of fibres and moisture content of yarn.

 

Keywords: Linear density; moisture content; twist angle; yarn

 

ABSTRAK

Pada masa ini, terdapat minat yang semakin meningkat bagi penggunaan bahan tenun dalam pengeluaran komposit untuk banyak aplikasi seperti aplikasi struktur, aplikasi bukan struktur, utiliti isi rumah, bahagian untuk kereta, komponen aeroangkasa, lantai dan komposit laminat balistik. Struktur dan sifat kain tenunan itu sangat penting kerana ia menentukan sifat komposit tenunan. Ciri-ciri benang seperti ketumpatan linear, faktor pintalan dan kekuatan boleh mempengaruhi kebanyakan sifat kain tenunan. Kekuatan kain tenunan adalah salah satu ciri yang paling penting yang menjadikannya unggul dalam aplikasi komposit akhir. Dalam kajian ini, kesan ketumpatan linear iaitu 500, 1000, 1500 dan 2000 tex dinilai terhadap sifat fizikal dan mekanikal benang kenaf. Penilaian daripada segi jenis pintalan, sudut pintalan, diameter benang, struktur benang, ketumpatan serat, kandungan lembapan, penyerapan air dan sifat mekanikal telah dijalankan pada benang kenaf. Ciri-ciri mekanikal benang telah diuji pada kekuatan tegangan, modulus Young dan pemanjangan. Kajian mendapati ketumpatan linear yang berbeza menghasilkan sifat benang yang berbeza. Benang dengan ketumpatan linear yang lebih tinggi menghasilkan diameter benang yang lebih luas berbanding benang berketumpatan linear yang lebih rendah menghasilkan benang dengan kandungan serat dan lembapan yang lebih tinggi. Kekuatan tegangan benang meningkat sebanyak 46% apabila ketumpatan linear diubah daripada 500 hingga 2000 tex disebabkan oleh jumlah gentian individu yang lebih tinggi. Walau bagaimanapun, nilainya berkurangan bagi modulus Young kerana ketumpatan linear benang meningkat disebabkan oleh beberapa faktor termasuk bilangan serat dan kandungan lembapan benang.

 

Kata kunci: Benang; kandungan lembapan; ketumpatan linear; sudut pintalan

REFERENCES

 

Abdellaoui, H., Bensalah, H., Echaabi, J., Bouhfid, R. & Qaiss, A. 2015. Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Materials and Design 68: 104-113.

Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam, M. & Venkateshwaren, N. 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials and Design 66: 246-257.

Azrin Hani Abdul, R., Roslan, A., Jaafar, M., Roslan, M.N. & Ariffin, S. 2011. Mechanical properties evaluation of woven coir and kevlar reinforced epoxy composites. Advanced Materials Research 277: 36-42.

Baghaei, B., Skrifvars, M. & Berglin, L. 2015. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern. Applied Science and Manufacturing 76: 154-161.

Bodros, E. & Baley, C. 2008. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters 62(14): 2143-2145.

Chattopadhyay, R. 2008. Design of apparel fabrics: Role of fibre, yarn and fabric parameters on its functional attributes. Journal of Textile Engineering 54(6): 179-190.

Dalbehera, S. & Acharya, S.K. 2015. Effect of cenosphere addition on erosive wear behaviour of jute-glass reinforced composite using taguchi experimental design. Materials Today: Proceedings 2(4-5): 2389-2398.

Duval, A., Bourmaud, A., Augier, L. & Baley, C. 2011. Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters 65(4): 797-800.

Faruk, O., Bledzki, A.K., Fink, H.P. & Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000- 2010. Progress in Polymer Science 37(11): 1552-1596.

Gabrijelcic, H., Cernosa, E. & Dimitrovski, K. 2008. Influence of weave and weft characteristics on tensile properties of fabrics. Fibres and Textiles in Eastern Europe 2(67): 45-51.

Goutianos, S., Peijs, T., Nystrom, B. & Skrifvars, M. 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials 13(4): 199-215.

Hani, A., Rashid, A., Seang, C.T., Ahmad, R. & Mariatti, J.M. 2013. Impact and flexural properties of imbalance plain woven coir and kenaf composite. Applied Mechanics and Materials 271: 81-85.

Jawaid, M., Khalil, H.A. & Bakar, A.A. 2011. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Materials Science and Engineering 528(15): 5190-5195.

Júnior, C.P., De Carvalho, L.H., Fonseca, V.M., Monteiro, S.N. & d’Almeida, J.R.M. 2004. Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites. Polymer Testing 23(2): 131-135.

Kadoğlu, H. 2006. Determining fibre properties and linear density effect on cotton yarn hairiness in ring spinning. Fibres and Textiles in Eastern Europe 3(57): 48-51.

Khan, G.A., Terano, M., Gafur, M.A. & Alam, M.S. 2016. Studies on the mechanical properties of woven jute fabric reinforced poly (l-lactic acid) composites. Journal of King Saud University-Engineering Sciences 28(1): 69-74.

Le Duigou, A., Deux, J.M., Davies, P. & Baley, C. 2011. PLLA/ flax mat/balsa bio-sandwich manufacture and mechanical properties. Applied Composite Materials 18(5): 421-438.

Liu, Q. & Hughes, M. 2008. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Applied Science and Manufacturing 39(10): 1644-1652.

Madsen, B., Hoffmeyer, P., Thomsen, A.B. & Lilholt, H. 2007. Hemp yarn reinforced composites-I. Yarn characteristics. Applied Science and Manufacturing 38(10): 2194-2203.

Me, R.C., Ibrahim, R. & Tahir, P.M. 2012. Natural based biocomposite material for prosthetic socket fabrication. ALAM CIPTA, International Journal of Sustainable Tropical Design Research and Practice 5(1): 27-34.

Mollanoori, M. & Alamdar-Yazdi, A. 2012. Twist direction effect on the mechanical properties of woven fabric. Fibres & Textiles in Eastern Europe 5(94): 48-55.

Mossello, A.A., Harun, J., Shamsi, S.R.F., Resalati, H., Tahir, P.M., Ibrahim, R. & Mohmamed, A.Z. 2010. A review of literatures related to kenaf as a alternative for pulpwoods. Agricultural Journal 5(3): 131-138.

Ochi, S. 2008. Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mechanics of Materials 40(4-5): 446-452.

Oksman, K., Skrifvars, M. & Selin, J.F. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology 63(9): 1317-1324.

Pothan, L.A., Oommen, Z. & Thomas, S. 2003. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology 63(2): 283-293.

Saiman, M.P., Wahab, B., Saidin, M. & Wahit, M.U. 2014. The effect of yarn linear density on mechanical properties of plain woven kenaf reinforced unsaturated polyester composite. Applied Mechanics and Materials 465: 962-966.

Sapuan, S.M., Leenie, A., Harimi, M. & Beng, Y.K. 2006. Mechanical properties of woven banana fibre reinforced epoxy composites. Materials and Design 27(8): 689-693.

Sapuan, S.M. & Maleque, M.A. 2005. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials and Design 26(1): 65-71.

Satyanarayana, K.G., Arizaga, G.G. & Wypych, F. 2009. Biodegradable composites based on lignocellulosic fibers- An overview. Progress in Polymer Science 34(9): 982-1021.

Shah, D.U., Schubel, P.J. & Clifford, M.J. 2013. Modelling the effect of yarn twist on the tensile strength of unidirectional plant fibre yarn composites. Journal of Composite Materials 47(4): 425-436.

Song, Y.S., Lee, J.T., Ji, D.S., Kim, M.W., Lee, S.H. & Youn, J.R. 2012. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly (lactic acid) composites. Engineering 43(3): 856-860.

Sulaiman, S., Mokhtar, M.N., Naim, M.N., Baharuddin, A.S., Salleh, M.A.M. & Sulaiman, A. 2015. Study on the preparation of cellulose nanofibre (CNF) from kenaf bast fibre for enzyme immobilization application. Sains Malaysiana 44(11): 1541-1550.

Summerscales, J., Dissanayake, N., Virk, A. & Hall, W. 2010. A review of bast fibres and their composites. Applied Science and Manufacturing 41(10): 1336-1344.

Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z. & Zainudin, E.S. 2015. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Materials and Design 67: 173-179.

 

 

*Corresponding author; email: a.humaira.aisyah@gmail.com

 

 

 

 

 

 

previous