Sains Malaysiana 47(8)(2018): 1853–1860
http://dx.doi.org/10.17576/jsm-2018-4708-25
Evaluation
of Kenaf Yarn Properties as Affected by Different Linear Densities for Woven
Fabric Laminated Composite Production
(Kajian
ke atas Sifat Benang Kenaf Kesan daripada Perbezaan Ketumpatan
Linear untuk Penghasilan Fabrik Tenunan Komposit Berlaminasi)
AISYAH HUMAIRA ALIAS1*, PARIDAH MD. TAHIR1, KHALINA ABDAN2, MOHD SAPUAN SALIT3, MD. SAIDIN WAHAB4 & MOHD PAHMI SAIMAN5
1Institute
of Tropical Forestry and Forest Product (INTROP), Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of
Biocomposite Technology, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Faculty of Engineering,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
4Faculty of Mechanical
Engineering, Universiti Tun Hussien Onn Malaysia (UTHM),
86400 Batu Pahat, Johor Darul Takzim, Malaysia
5Politeknik Seberang
Perai (PSP), Jalan Permatang Pauh, 13500, Permatang Pauh, Pulau
Pinang, Malaysia
Received: 29 May 2017/Accepted: 14 April 2018
ABSTRACT
Currently, there is a growing interest of using woven material in
composite production for many applications such as structural
applications, non-structural applications, household utilities,
parts for automobile, aerospace components, flooring and ballistic
laminate composites. The structure and properties of the woven
fabric is very important as it dictate the woven composite properties.
The properties of yarn like linear density, twist factor and strength
can influence most of the woven fabric properties. Strength of
woven fabric is one of the most important properties which make
it superior in final composite applications. In this study, the
effects of linear density i.e. 500, 1000, 1500 and 2000 tex
on physical and mechanical properties of kenaf yarn were evaluated.
The assessment on twist type, twist angle, yarn diameter, yarn
structure, fibre density, moisture content, water absorption and
mechanical properties were carried out on kenaf yarns. The yarn
mechanical properties were tested on the tensile strength, Young's
Modulus and elongation. It was found that, different linear density
of yarn exhibited different behavior of yarn properties. Higher
linear density yarn produced wider yarn diameter compared to lower
linear density yarn, resulting to higher fibre and moisture content
yarn. Yarn tensile strength has increased by 46% when linear density
was changed from 500 to 2000 tex due
to higher amount of individual fibres. However, for Young's Modulus,
the values reduced as the yarn linear density increased due to
several factors including number of fibres and moisture content
of yarn.
Keywords: Linear density; moisture content; twist angle; yarn
ABSTRAK
Pada masa ini, terdapat minat yang semakin meningkat bagi
penggunaan bahan tenun dalam pengeluaran komposit untuk banyak aplikasi seperti
aplikasi struktur, aplikasi bukan struktur, utiliti isi rumah, bahagian untuk
kereta, komponen aeroangkasa, lantai dan komposit laminat balistik. Struktur
dan sifat kain tenunan itu sangat penting kerana ia menentukan sifat komposit tenunan. Ciri-ciri benang seperti
ketumpatan linear, faktor pintalan dan kekuatan boleh mempengaruhi kebanyakan
sifat kain tenunan. Kekuatan kain tenunan adalah salah
satu ciri yang paling penting yang menjadikannya unggul dalam aplikasi komposit
akhir. Dalam kajian ini, kesan ketumpatan linear iaitu 500, 1000, 1500
dan 2000 tex dinilai terhadap sifat fizikal dan mekanikal benang kenaf. Penilaian daripada segi jenis pintalan, sudut pintalan, diameter
benang, struktur benang, ketumpatan serat, kandungan lembapan, penyerapan air
dan sifat mekanikal telah dijalankan pada benang kenaf. Ciri-ciri mekanikal benang telah diuji pada kekuatan tegangan,
modulus Young dan pemanjangan. Kajian mendapati
ketumpatan linear yang berbeza menghasilkan sifat benang yang berbeza. Benang dengan ketumpatan linear yang lebih tinggi menghasilkan
diameter benang yang lebih luas berbanding benang berketumpatan linear yang
lebih rendah menghasilkan benang dengan kandungan serat dan lembapan yang lebih
tinggi. Kekuatan tegangan benang meningkat sebanyak 46% apabila
ketumpatan linear diubah daripada 500 hingga 2000 tex disebabkan oleh jumlah
gentian individu yang lebih tinggi. Walau bagaimanapun,
nilainya berkurangan bagi modulus Young kerana ketumpatan linear benang
meningkat disebabkan oleh beberapa faktor termasuk bilangan serat dan kandungan
lembapan benang.
Kata kunci: Benang; kandungan lembapan;
ketumpatan linear; sudut pintalan
REFERENCES
Abdellaoui, H., Bensalah, H., Echaabi, J., Bouhfid, R. &
Qaiss, A. 2015. Fabrication, characterization and modelling of laminated
composites based on woven jute fibres reinforced epoxy resin. Materials and
Design 68: 104-113.
Alavudeen, A., Rajini, N., Karthikeyan,
S., Thiruchitrambalam, M. & Venkateshwaren, N. 2015. Mechanical properties of banana/kenaf fiber-reinforced
hybrid polyester composites: Effect of woven fabric and random orientation. Materials
and Design 66: 246-257.
Azrin Hani Abdul, R., Roslan, A., Jaafar, M., Roslan, M.N.
& Ariffin, S. 2011. Mechanical properties evaluation of woven coir and
kevlar reinforced epoxy composites. Advanced Materials Research 277:
36-42.
Baghaei, B., Skrifvars, M. &
Berglin, L. 2015. Characterization of thermoplastic
natural fibre composites made from woven hybrid yarn prepregs with different
weave pattern. Applied Science and Manufacturing 76: 154-161.
Bodros, E. & Baley, C. 2008. Study of
the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters 62(14): 2143-2145.
Chattopadhyay, R. 2008. Design of apparel fabrics: Role of
fibre, yarn and fabric parameters on its functional attributes. Journal of
Textile Engineering 54(6): 179-190.
Dalbehera, S. & Acharya, S.K. 2015. Effect of cenosphere
addition on erosive wear behaviour of jute-glass reinforced composite using
taguchi experimental design. Materials Today: Proceedings 2(4-5):
2389-2398.
Duval, A., Bourmaud, A., Augier, L.
& Baley, C. 2011. Influence of the
sampling area of the stem on the mechanical properties of hemp fibers. Materials
Letters 65(4): 797-800.
Faruk, O., Bledzki, A.K., Fink, H.P.
& Sain, M. 2012. Biocomposites
reinforced with natural fibers: 2000- 2010. Progress in Polymer Science 37(11):
1552-1596.
Gabrijelcic, H., Cernosa, E. & Dimitrovski, K. 2008.
Influence of weave and weft characteristics on tensile properties of fabrics. Fibres
and Textiles in Eastern Europe 2(67): 45-51.
Goutianos, S., Peijs, T., Nystrom, B. & Skrifvars, M.
2006. Development of flax fibre based textile reinforcements for composite
applications. Applied Composite Materials 13(4): 199-215.
Hani, A., Rashid, A., Seang, C.T.,
Ahmad, R. & Mariatti, J.M. 2013. Impact
and flexural properties of imbalance plain woven coir
and kenaf composite. Applied Mechanics and Materials 271: 81-85.
Jawaid, M., Khalil, H.A. & Bakar,
A.A. 2011. Woven hybrid composites: Tensile and
flexural properties of oil palm-woven jute fibres based epoxy composites. Materials
Science and Engineering 528(15): 5190-5195.
Júnior, C.P., De Carvalho, L.H.,
Fonseca, V.M., Monteiro, S.N. & d’Almeida, J.R.M. 2004. Analysis of the tensile strength of
polyester/hybrid ramie-cotton fabric composites. Polymer Testing 23(2):
131-135.
Kadoğlu, H. 2006. Determining fibre properties and
linear density effect on cotton yarn hairiness in ring spinning. Fibres and
Textiles in Eastern Europe 3(57): 48-51.
Khan, G.A., Terano, M., Gafur, M.A.
& Alam, M.S. 2016. Studies on the
mechanical properties of woven jute fabric reinforced poly (l-lactic acid)
composites. Journal of King Saud University-Engineering Sciences 28(1):
69-74.
Le Duigou, A., Deux, J.M., Davies, P. & Baley, C. 2011. PLLA/ flax mat/balsa bio-sandwich manufacture and mechanical
properties. Applied Composite Materials 18(5): 421-438.
Liu, Q. & Hughes, M. 2008. The fracture behaviour and toughness of woven flax fibre
reinforced epoxy composites. Applied Science and Manufacturing 39(10):
1644-1652.
Madsen, B., Hoffmeyer, P., Thomsen,
A.B. & Lilholt, H. 2007. Hemp
yarn reinforced composites-I. Yarn characteristics. Applied Science and
Manufacturing 38(10): 2194-2203.
Me, R.C., Ibrahim, R. & Tahir, P.M.
2012. Natural based biocomposite material
for prosthetic socket fabrication. ALAM CIPTA, International Journal of
Sustainable Tropical Design Research and Practice 5(1): 27-34.
Mollanoori, M. & Alamdar-Yazdi, A.
2012. Twist direction effect on the
mechanical properties of woven fabric. Fibres & Textiles in Eastern
Europe 5(94): 48-55.
Mossello, A.A., Harun, J., Shamsi, S.R.F., Resalati, H.,
Tahir, P.M., Ibrahim, R. & Mohmamed, A.Z. 2010. A review of literatures
related to kenaf as a alternative for pulpwoods. Agricultural
Journal 5(3): 131-138.
Ochi, S. 2008. Mechanical properties of
kenaf fibers and kenaf/ PLA composites. Mechanics of Materials 40(4-5):
446-452.
Oksman, K., Skrifvars, M. & Selin, J.F. 2003. Natural fibres as reinforcement in polylactic acid (PLA)
composites. Composites Science and Technology 63(9): 1317-1324.
Pothan, L.A., Oommen, Z. & Thomas, S. 2003. Dynamic
mechanical analysis of banana fiber reinforced polyester composites. Composites
Science and Technology 63(2): 283-293.
Saiman, M.P., Wahab, B., Saidin, M.
& Wahit, M.U. 2014. The effect of yarn linear density on
mechanical properties of plain woven kenaf reinforced unsaturated polyester
composite. Applied Mechanics and Materials 465: 962-966.
Sapuan, S.M., Leenie, A., Harimi, M. & Beng, Y.K. 2006. Mechanical properties of woven banana
fibre reinforced epoxy composites. Materials and Design 27(8): 689-693.
Sapuan, S.M. & Maleque, M.A. 2005. Design and
fabrication of natural woven fabric reinforced epoxy composite for household
telephone stand. Materials and Design 26(1): 65-71.
Satyanarayana, K.G., Arizaga, G.G.
& Wypych, F. 2009. Biodegradable
composites based on lignocellulosic fibers- An overview. Progress in Polymer
Science 34(9): 982-1021.
Shah, D.U., Schubel, P.J. &
Clifford, M.J. 2013. Modelling the effect
of yarn twist on the tensile strength of unidirectional plant fibre yarn
composites. Journal of Composite Materials 47(4): 425-436.
Song, Y.S., Lee, J.T., Ji, D.S., Kim,
M.W., Lee, S.H. & Youn, J.R. 2012. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly (lactic
acid) composites. Engineering 43(3): 856-860.
Sulaiman, S., Mokhtar, M.N., Naim,
M.N., Baharuddin, A.S., Salleh, M.A.M. & Sulaiman, A. 2015. Study on the preparation of cellulose nanofibre (CNF) from
kenaf bast fibre for enzyme immobilization application. Sains Malaysiana 44(11):
1541-1550.
Summerscales, J., Dissanayake, N.,
Virk, A. & Hall, W. 2010. A review of bast fibres and their composites. Applied
Science and Manufacturing 41(10): 1336-1344.
Yahaya, R., Sapuan, S.M., Jawaid, M.,
Leman, Z. & Zainudin, E.S. 2015. Effect
of layering sequence and chemical treatment on the mechanical properties of woven
kenaf-aramid hybrid laminated composites. Materials and Design 67:
173-179.
*Corresponding
author; email: a.humaira.aisyah@gmail.com