Sains Malaysiana 47(8)(2018): 1883–1890
http://dx.doi.org/10.17576/jsm-2018-4708-29
A Review
of Common Beam Hardening Correction Methods for Industrial X-ray
Computed
Tomography
(Ulasan
Mengenai Kaedah Pembetulan Pengerasan Alang bagi Tomografi X-ray Berkomputer
Industri)
O.M.H. AHMED
& YUSHOU SONG*
College
of Nuclear Science and Technology, Harbin Engineering University, 145 Nantong
Street, Harbin 150001, China
Received:
9 December 2017/Accepted: 5 April 2018
ABSTRACT
X-ray computed tomography (XCT) became an important
instrument for quality assurance in industry products as a non-destructive
testing tool for inspection, evaluation, analysis and dimensional metrology.
Thus, a high-quality image is required. Due to the polychromatic nature of X-ray
energy in XCT, this leads to errors in attenuation coefficient
which is generally known as beam hardening artifact. This leads to a distortion
or blurring-like cupping and streak in the reconstruction images, where a
significant decrease in imaging quality is observed. In this paper, recent
research publications regarding common practical correction methods that were
adopted to improve an imaging quality have been discussed. It was observed from
the discussion and evaluation, that a problem behind beam hardening reduction
for the multi-materials object, especially in the absence of prior information
about X-ray spectrum and material characterizations would be a significant
research contribution, if the correction could be achieved without the need to
perform forward projections and multiple reconstructions.
Keywords: Beam hardening; cupping artifact; images artifact
ABSTRAK
Tomografi x-ray berkomputer (XCT)
menjadi instrumen yang penting dalam penjaminan kualiti produk industri sebagai
alat ujian tak musnah bagi menjalankan pemeriksaan, penilaian, analisis dan
metrologi berdimensi. Oleh itu, imej yang berkualiti tinggi
diperlukan. Disebabkan oleh sifat tenaga x-ray XCT yang
polikromatik, hal ini boleh menyebabkan dalam pengecilan pekali yang dikenali sebagai
artifak pengerasan alang. Hal ini seterusnya menyebabkan
lengkungan seperti erot atau kabur dan jejalur pada pembinaan semula imej yang
menyebabkan penurunan kualiti yang signifikan pada imej yang dilihat. Kertas ini membincangkan mengenai penerbitan yang mengkaji kaedah
pembetulan praktikal yang digunakan untuk meningkatkan kualiti pengimejan. Daripada perbincangan dan penilaian yang dilakukan, masalah di sebalik
pengurangan pengerasan alang bagi objek multi-bahan terutamanya pada ketiadaan
maklumat awal tentang spektrum X-ray dan sifat bahan boleh menjadi sumbangan
kajian yang sangat penting, iaitu sekiranya pembetulan tersebut boleh dicapai
tanpa perlu melakukan unjuran awal dan pembinaan semula berganda.
Kata kunci: Artifak imej; artifak lengkung;
pengerasan alang
REFERENCES
Arunmuthu, K., Ashish, M., Saravanan,
T., Philip, J., Rao, B.P.C. & Jayakumar, T. 2013. Simulation of beam hardening in X-ray tomography and its
correction using linearisation and pre-filtering approaches. Insight:
Non-Destructive Testing and Condition Monitoring 55(10): 540-547.
Brabant, L., Pauwels, E., Dierick, M.,
Van Loo, D., Boone, M.A. & Van Hoorebeke, L. 2012. A novel beam hardening correction method requiring no prior
knowledge, incorporated in an iterative reconstruction algorithm. NDT and E
International 51: 68-73.
Brooks, R.A. & Di Chiro, G. 1976. Principles of computer
assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics
in Medicine and Biology 21(5): 689-732.
Cantatore, A. & Müller, P. 2011. Introduction
to Computed Tomography. DTU Mechanical
Engineering. Denmark: Kgs.Lyngby.
Carlsson, C.A. & Carlsson, G.A. 1996. Basic
Physics of X-Ray Imaging (2nd Ed). Linköping: Linköping University.
Chen, S., Xi, X., Li, L., Luo, L., Han, Yu., Wang, J. & Yan, B. 2017. A filter design method for beam hardening
correction in middle-energy x-ray computed tomography. Proceedings Volume
10033, Eight International Conference on Digital Image
Processing (ICDIP 2016). pp. 2-7.
Chu, R.Y.L. 1983. Radiological imaging: The theory of image
formation, detection, and processing. Vol. 2, edited by Barrett,
H.H. & Swindell, W. Medical Physics 10(2): 262-263.
doi: 10.1118/1.595250.
Cleland, M.R. & Stichelbaut, F.
2013. Radiation processing with high-energy
X-rays. Radiation Physics and Chemistry 84: 91-99.
De Chiffre, L., Carmignato, S., Kruth,
J., Schmitt, R. & Weckenmann, A. 2014. CIRP annals - Manufacturing technology: Industrial applications of computed
tomography. CIRP Annals - Manufacturing Technology 63(2): 655-677.
Gao, H., Zhang, L., Chen, Z., Xing, Y. & Li, S. 2006.
Beam hardening correction for middle-energy industrial computerized tomography. IEEE Transactions on Nuclear Science 53(5): 2796-2807.
Hammersberg, P. & Mangard, M. 1998. Correction for beam hardening artefacts in computerised
tomography. Journal of X-Ray Science and Technology 8(1): 75-93.
Hampel, U. 2015. 6 - X-ray computed tomography. In Industrial
Tomography: Systems and Applications, edited by Wang, M. Cambridge:
Elsevier Ltd. pp. 175-196.
Hanna, R.D. & Ketcham, R.A. 2017. X-ray computed
tomography of planetary materials: A primer and review of recent studies. Chemie
Der Erde - Geochemistry 77(4): 547-572.
Herman, G.T. 1979. Correction for beam hardening in computed
tomography. Physics in Medicine and Biology 24(1): 81-106.
Hounsfield, G.N. 1972. A method of an apparatus
for examination of a body by radiation such as X- or gamma-radiation.
1283915, issued 1972. (patent).
Hussein, E.M.A. 2011. Computed Radiation Imaging: Physics
and Mathematics of Forward and Inverse Problems. 1st ed. Armsterdarm:
Elsevier Inc.
Jennings, R.J. 1988. A method for
comparing beam-hardening filter materials for diagnostic radiology. Medical
Physics 15(4): 588-599.
Ketcham, R.A. & Hanna, R.D. 2014. Computers &
geosciences beam hardening correction for x-ray computed tomography of
heterogeneous natural materials. Computers and Geosciences 67: 49-61.
Kimoto, N., Hayashi, H., Asahara, T., Mihara, Y., Kanazawa,
Y., Yamakawa, T., Yamamoto, S., Yamasaki, M. & Okada, M. 2017. Precise
material identification method based on a photon counting technique with
correction of the beam hardening effect in x-ray spectra. Applied Radiation
and Isotopes 124: 16-26.
Kitazawa, S., Abe, Y. & Sato, K.
2005. Simulations of MeV energy computed
tomography. NDT & E International 38(4): 275-282.
Knoll, G.F. 2010. Radiation Detection and Measurement. 4th ed.
Michigan: John Wiley & Sons, Inc.
Krumm, M.Ã., Kasperl, S. & Franz,
M. 2008. Reducing non-linear artifacts of
multi-material objects in industrial 3d computed tomography. NDT & E
International 41(4): 242-251.
Lifton, J.J., Malcolm, A.A. & Mcbride, J.W. 2013. The
application of beam hardening correction for industrial x-ray computed
tomography. Proceedings: 5th International Symposium on NDT in Aerospace.
Lifton, J.J. 2017. Multi-material linearization beam
hardening correction for computed tomography. Journal of X-Ray Science and
Technology 25: 629-640.
Nalcioglu, O. & Lou, R.Y. 1979. Post-reconstruction
method for beam hardening in computerised tomography. Physics in Medicine
& Biology 24: 3300-3340.
Rajendran, K., Walsh, M.F., de Ruiter, N.J.A., Chernoglazov,
A.I., Panta, R.K., Butler, A.P.H., Butler, P.H., Bell, S.T., Anderson, N.G.,
Woodfield, T.B.F., Tredinnick, S.J., Healy, J.L., Baterman, C.J., Aamir, R.,
Doesburg, R.M.N., Renaud, P.F., Gieseg, S.P., Smithies, D.J., Mohr, J.L.,
Mandalika, V.B.H., Opie, A.M.T., Cook, N.J., Ronaldson, J.P., Nik, S.J.,
Atharifard, A., Clyne, M., Bones, P.J., Barneck, C., Grasset, R., Schleich, N.
& Bilinghurst, M. 2014. Reducing beam hardening effects and metal artefacts
in spectral CT using Medipix3RX. Journal of Instrumentation 9(3):
P03015-P03015.
Ramakrishna, K., Muralidhar, K. & Munshi, P. 2006. Beam-hardening
in simulated X-ray tomography. NDT and E International 39(6): 449-457.
Rasoulpour, N., Kamali-Asl, A. &
Hemmati, H. 2015. A new approach for beam hardening
correction based on the local spectrum distributions. Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 794: 177-184.
Sahebnasagh, A., Adinehvand, K. &
Azadbakht, B. 2012. Simulation
of beam hardening in industrial CT with X-ray and monoenergetic source by Monte
Carlo Code. Journal of Basic and Applied Scientific Research 2(5):
5255-5259.
Segal, E., Ellingson, W.A., Segal, Y.
& Zmora, I. 1987. A linearization
beam-hardening correction method for X-Ray computed tomographic imaging of
structural ceramics. Review of Progress in Quantitative Nondestructive
Evaluation 0: 411-419.
Tan, Y., Kiekens, K., Welkenhuyzen, F.,
Angel, J., De Chiffre, L., Kruth, J. & Dewulf, W. 2014. Simulation-aided investigation of beam hardening induced
errors in CT dimensional metrology. Measurement Science and Technology 25(6):
64014.
Thomsen, M., Knudsen, E.B., Willendrup, P.K., Bech, M.,
Willner, M., Pfeiffer, F., Poulsen, M., Lefmann, K. & Feidenhans’l, R.
2015. Prediction of beam hardening artefacts in computed
tomography using Monte Carlo simulations. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 342:
314-320.
Van de Casteele, E., Van Dyck, D., Sijbers, J. & Raman,
E. 2002. An energy-based beam hardening model in tomography. Physics in Medicine and Biology 47(23): 4181-4190.
Van de Casteele, E., Van Dyck, D., Sijbers, J. & Raman,
E. 2004. A model-based correction method for beam
hardening artefacts in x-ray microtomography. Journal of X-Ray
Science and Technology 12(1): 43-57.
Wang,
M. 2015. Industrial Tomography: Systems and Applications. Armsterdam:
Elsevier Ltd.
Yan,
C.H., Whalen, R.T., Beaupré, G.S., Yen, S.Y. & Napel, S. 2000.
Reconstruction algorithm for polychromatic CT imaging: Application to beam
hardening correction. IEEE Transactions on Medical Imaging 19(1): 1-11.
Yang, Q., Elter, M. & Scherl, H. 2012. Accelerated quantitative multi-material beam hardening correction (BHC) in
cone-beam CT. European Congress of Radiology DOI: 10.1594/
ecr2012/C-2161.
Zhou,
R-F., Wang, J. & Chen, W. 2009. X-ray beam
hardening correction for measuring density in linear accelerator industrial
computed tomography. Chinese Physics C 33(7): 599.
doi:10.1088/1674-1137/33/7/018.
*Corresponding
author; email: songyushou80@163.com