Sains Malaysiana 47(8)(2018): 1883–1890

http://dx.doi.org/10.17576/jsm-2018-4708-29

 

A Review of Common Beam Hardening Correction Methods for Industrial X-ray

Computed Tomography

(Ulasan Mengenai Kaedah Pembetulan Pengerasan Alang bagi Tomografi X-ray Berkomputer Industri)

 

O.M.H. AHMED & YUSHOU SONG*

 

College of Nuclear Science and Technology, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China

 

Received: 9 December 2017/Accepted: 5 April 2018

 

ABSTRACT

X-ray computed tomography (XCT) became an important instrument for quality assurance in industry products as a non-destructive testing tool for inspection, evaluation, analysis and dimensional metrology. Thus, a high-quality image is required. Due to the polychromatic nature of X-ray energy in XCT, this leads to errors in attenuation coefficient which is generally known as beam hardening artifact. This leads to a distortion or blurring-like cupping and streak in the reconstruction images, where a significant decrease in imaging quality is observed. In this paper, recent research publications regarding common practical correction methods that were adopted to improve an imaging quality have been discussed. It was observed from the discussion and evaluation, that a problem behind beam hardening reduction for the multi-materials object, especially in the absence of prior information about X-ray spectrum and material characterizations would be a significant research contribution, if the correction could be achieved without the need to perform forward projections and multiple reconstructions.

 

Keywords: Beam hardening; cupping artifact; images artifact

 

ABSTRAK

Tomografi x-ray berkomputer (XCT) menjadi instrumen yang penting dalam penjaminan kualiti produk industri sebagai alat ujian tak musnah bagi menjalankan pemeriksaan, penilaian, analisis dan metrologi berdimensi. Oleh itu, imej yang berkualiti tinggi diperlukan. Disebabkan oleh sifat tenaga x-ray XCT yang polikromatik, hal ini boleh menyebabkan dalam pengecilan pekali yang dikenali sebagai artifak pengerasan alang. Hal ini seterusnya menyebabkan lengkungan seperti erot atau kabur dan jejalur pada pembinaan semula imej yang menyebabkan penurunan kualiti yang signifikan pada imej yang dilihat. Kertas ini membincangkan mengenai penerbitan yang mengkaji kaedah pembetulan praktikal yang digunakan untuk meningkatkan kualiti pengimejan. Daripada perbincangan dan penilaian yang dilakukan, masalah di sebalik pengurangan pengerasan alang bagi objek multi-bahan terutamanya pada ketiadaan maklumat awal tentang spektrum X-ray dan sifat bahan boleh menjadi sumbangan kajian yang sangat penting, iaitu sekiranya pembetulan tersebut boleh dicapai tanpa perlu melakukan unjuran awal dan pembinaan semula berganda.

 

Kata kunci: Artifak imej; artifak lengkung; pengerasan alang

 

REFERENCES

 

Arunmuthu, K., Ashish, M., Saravanan, T., Philip, J., Rao, B.P.C. & Jayakumar, T. 2013. Simulation of beam hardening in X-ray tomography and its correction using linearisation and pre-filtering approaches. Insight: Non-Destructive Testing and Condition Monitoring 55(10): 540-547.

Brabant, L., Pauwels, E., Dierick, M., Van Loo, D., Boone, M.A. & Van Hoorebeke, L. 2012. A novel beam hardening correction method requiring no prior knowledge, incorporated in an iterative reconstruction algorithm. NDT and E International 51: 68-73.

Brooks, R.A. & Di Chiro, G. 1976. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics in Medicine and Biology 21(5): 689-732.

Cantatore, A. & Müller, P. 2011. Introduction to Computed Tomography. DTU Mechanical Engineering. Denmark: Kgs.Lyngby.

Carlsson, C.A. & Carlsson, G.A. 1996. Basic Physics of X-Ray Imaging (2nd Ed). Linköping: Linköping University.

Chen, S., Xi, X., Li, L., Luo, L., Han, Yu., Wang, J. & Yan, B. 2017. A filter design method for beam hardening correction in middle-energy x-ray computed tomography. Proceedings Volume 10033, Eight International Conference on Digital Image Processing (ICDIP 2016). pp. 2-7.

Chu, R.Y.L. 1983. Radiological imaging: The theory of image formation, detection, and processing. Vol. 2, edited by Barrett, H.H. & Swindell, W. Medical Physics 10(2): 262-263. doi: 10.1118/1.595250.

Cleland, M.R. & Stichelbaut, F. 2013. Radiation processing with high-energy X-rays. Radiation Physics and Chemistry 84: 91-99.

De Chiffre, L., Carmignato, S., Kruth, J., Schmitt, R. & Weckenmann, A. 2014. CIRP annals - Manufacturing technology: Industrial applications of computed tomography. CIRP Annals - Manufacturing Technology 63(2): 655-677.

Gao, H., Zhang, L., Chen, Z., Xing, Y. & Li, S. 2006. Beam hardening correction for middle-energy industrial computerized tomography. IEEE Transactions on Nuclear Science 53(5): 2796-2807.

Hammersberg, P. & Mangard, M. 1998. Correction for beam hardening artefacts in computerised tomography. Journal of X-Ray Science and Technology 8(1): 75-93.

Hampel, U. 2015. 6 - X-ray computed tomography. In Industrial Tomography: Systems and Applications, edited by Wang, M. Cambridge: Elsevier Ltd. pp. 175-196.

Hanna, R.D. & Ketcham, R.A. 2017. X-ray computed tomography of planetary materials: A primer and review of recent studies. Chemie Der Erde - Geochemistry 77(4): 547-572.

Herman, G.T. 1979. Correction for beam hardening in computed tomography. Physics in Medicine and Biology 24(1): 81-106.

Hounsfield, G.N. 1972. A method of an apparatus for examination of a body by radiation such as X- or gamma-radiation. 1283915, issued 1972. (patent).

Hussein, E.M.A. 2011. Computed Radiation Imaging: Physics and Mathematics of Forward and Inverse Problems. 1st ed. Armsterdarm: Elsevier Inc.

Jennings, R.J. 1988. A method for comparing beam-hardening filter materials for diagnostic radiology. Medical Physics 15(4): 588-599.

Ketcham, R.A. & Hanna, R.D. 2014. Computers & geosciences beam hardening correction for x-ray computed tomography of heterogeneous natural materials. Computers and Geosciences 67: 49-61.

Kimoto, N., Hayashi, H., Asahara, T., Mihara, Y., Kanazawa, Y., Yamakawa, T., Yamamoto, S., Yamasaki, M. & Okada, M. 2017. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in x-ray spectra. Applied Radiation and Isotopes 124: 16-26.

Kitazawa, S., Abe, Y. & Sato, K. 2005. Simulations of MeV energy computed tomography. NDT & E International 38(4): 275-282.

Knoll, G.F. 2010. Radiation Detection and Measurement. 4th ed. Michigan: John Wiley & Sons, Inc.

Krumm, M.Ã., Kasperl, S. & Franz, M. 2008. Reducing non-linear artifacts of multi-material objects in industrial 3d computed tomography. NDT & E International 41(4): 242-251.

Lifton, J.J., Malcolm, A.A. & Mcbride, J.W. 2013. The application of beam hardening correction for industrial x-ray computed tomography. Proceedings: 5th International Symposium on NDT in Aerospace.

Lifton, J.J. 2017. Multi-material linearization beam hardening correction for computed tomography. Journal of X-Ray Science and Technology 25: 629-640.

Nalcioglu, O. & Lou, R.Y. 1979. Post-reconstruction method for beam hardening in computerised tomography. Physics in Medicine & Biology 24: 3300-3340.

Rajendran, K., Walsh, M.F., de Ruiter, N.J.A., Chernoglazov, A.I., Panta, R.K., Butler, A.P.H., Butler, P.H., Bell, S.T., Anderson, N.G., Woodfield, T.B.F., Tredinnick, S.J., Healy, J.L., Baterman, C.J., Aamir, R., Doesburg, R.M.N., Renaud, P.F., Gieseg, S.P., Smithies, D.J., Mohr, J.L., Mandalika, V.B.H., Opie, A.M.T., Cook, N.J., Ronaldson, J.P., Nik, S.J., Atharifard, A., Clyne, M., Bones, P.J., Barneck, C., Grasset, R., Schleich, N. & Bilinghurst, M. 2014. Reducing beam hardening effects and metal artefacts in spectral CT using Medipix3RX. Journal of Instrumentation 9(3): P03015-P03015.

Ramakrishna, K., Muralidhar, K. & Munshi, P. 2006. Beam-hardening in simulated X-ray tomography. NDT and E International 39(6): 449-457.

Rasoulpour, N., Kamali-Asl, A. & Hemmati, H. 2015. A new approach for beam hardening correction based on the local spectrum distributions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 794: 177-184.

Sahebnasagh, A., Adinehvand, K. & Azadbakht, B. 2012. Simulation of beam hardening in industrial CT with X-ray and monoenergetic source by Monte Carlo Code. Journal of Basic and Applied Scientific Research 2(5): 5255-5259.

Segal, E., Ellingson, W.A., Segal, Y. & Zmora, I. 1987. A linearization beam-hardening correction method for X-Ray computed tomographic imaging of structural ceramics. Review of Progress in Quantitative Nondestructive Evaluation 0: 411-419.

Tan, Y., Kiekens, K., Welkenhuyzen, F., Angel, J., De Chiffre, L., Kruth, J. & Dewulf, W. 2014. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology. Measurement Science and Technology 25(6): 64014.

Thomsen, M., Knudsen, E.B., Willendrup, P.K., Bech, M., Willner, M., Pfeiffer, F., Poulsen, M., Lefmann, K. & Feidenhans’l, R. 2015. Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 342: 314-320.

Van de Casteele, E., Van Dyck, D., Sijbers, J. & Raman, E. 2002. An energy-based beam hardening model in tomography. Physics in Medicine and Biology 47(23): 4181-4190.

Van de Casteele, E., Van Dyck, D., Sijbers, J. & Raman, E. 2004. A model-based correction method for beam hardening artefacts in x-ray microtomography. Journal of X-Ray Science and Technology 12(1): 43-57.

Wang, M. 2015. Industrial Tomography: Systems and Applications. Armsterdam: Elsevier Ltd.

Yan, C.H., Whalen, R.T., Beaupré, G.S., Yen, S.Y. & Napel, S. 2000. Reconstruction algorithm for polychromatic CT imaging: Application to beam hardening correction. IEEE Transactions on Medical Imaging 19(1): 1-11.

Yang, Q., Elter, M. & Scherl, H. 2012. Accelerated quantitative multi-material beam hardening correction (BHC) in cone-beam CT. European Congress of Radiology DOI: 10.1594/ ecr2012/C-2161.

Zhou, R-F., Wang, J. & Chen, W. 2009. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography. Chinese Physics C 33(7): 599. doi:10.1088/1674-1137/33/7/018.

 

 

*Corresponding author; email: songyushou80@163.com

 

 

 

 

previous