Sains Malaysiana 47(8)(2018): 1913–1922
http://dx.doi.org/10.17576/jsm-2018-4708-33
XPS
Study of Sulfur and Phosphorus Compounds with Different Oxidation States
(Kajian XPS untuk Sebatian Sulfur dan Fosforus yang
Mempunyai Pengoksidaan yang Berbeza)
KIM S. SIOW1,2*, LEANNE BRITCHER1, SUNIL KUMAR1,3 & HANS J GRIESSER1,4
1Ian Wark Research
Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
2Institute of
Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Coatings Mantra Science
and Technology Consulting, 11 Beresina Place, Greenwith, Adelaide,
SA 5125, Australia
4Mawson Institute, University
of South Australia, Mawson Lakes, SA 5095, Australia
Received: 9 February 2018/Accepted: 14 March 2018
ABSTRACT
In this report, we demonstrate that continuous improvement in XPS instruments
and the calibration standards as well as analysis with standard
component-fitting procedures can be used to determine the binding energies of
compounds containing phosphorus and sulfur of different oxidation states with
higher confidence. Based on such improved XPS analyses,
the binding energies (BEs) of S2p signals for sulfur of
increasing oxidation state are determined to be 166-167.5 eV for S=O in
dimethyl sulfoxide, 168.1 eV for S=O2 in
polysulfone, 168.4 eV for SO3 in
polystyrene sulfonate and 168.8 eV for SO4 in
chondroitin sulfate. The BEs of P2p signals show the
following values: 132.9 eV for PO3 in
triisopropyl phosphite, 133.3 eV for PO4 in
glycerol phosphate, 133.5 eV for PO4 in
sodium tripolyphosphate and 134.0 eV for PO4 in
sodium hexametaphosphate. These results showed that there are only small
increases in the binding energy when additional oxygen atoms are added to the
S-O chemical group. A similar result is obtained when the fourth oxygen or
poly-phosphate environment is added to the phosphorus compound. These BE values
are useful to researchers involved in identifying oxidation states of
phosphorus and sulfur atoms commonly observed on modified surfaces and
interfaces found in applications such as biomaterials, super-capacitors and
catalysis.
Keywords: Binding energies; oxidation state; phosphoric; sulphur; XPS
ABSTRAK
Kajian ini menunjukkan bahawa penambahbaikan yang berterusan dalam
spektroskopi foto-elektron x-ray (XPS), piawaian penentukuran dan
prosedur pencocokan lengkung puncak, boleh menentukan tenaga pengikat untuk
sebatian fosforus dan sulfur yang terdiri daripada pengoksidaan yang berbeza
dengan lebih jitu. Berdasarkan analisis XPS ini, tenaga pengikat (BE)
untuk puncak S2p daripada sebatian sulfur yang mempunyai pengoksidaan yang
meningkat ialah: 166-167.5 eV untuk S=O dalam dimetil sulfoxida, 168.1 eV untuk
S=O2 dalam poli-sulfon, 168.4 eV
untuk SO3 dalam polistirena sulfonat dan
168.8 eV untuk SO4 dalam
kondroitin sulfat. BE untuk puncak P2p daripada sebatian
fosforus menunjukkan bacaan berikut: 132.9 eV untuk PO3 dalam
tri-isopropil fosfit, 133.3 eV untuk PO4 dalam
fosfat gliserol, 133.5 eV untuk PO4 dalam
natrium tripolifosfat dan 134.0 eV untuk PO4 dalam
natrium hexametafosfat. Keputusan ini menunjukkan bahawa
hanya ada peningkatan yang kecil dalam tenaga pengikat (eV) apabila atom
oksigen ditambah kepada sebatian yang diikat oleh S-O. Keputusan yang sama diperoleh apabila persekitaran oksigen atau poli-fosfat
keempat ditambah kepada sebatian fosforus. Nilai BE untuk
sebatian sulfur dan fosforus ini adalah berguna untuk para penyelidik yang cuba mengenal pasti sebatian yang lazim terdapat di atas permukaan
dan antara-muka untuk aplikasi seperti bio-bahan, super-kapasitor dan mangkin.
Kata kunci: Fosforus;
keadaan pengoksidaan; spektroskopi fotoelektron x-ray; sulfur; tenaga pengikat
REFERENCES
Alexander, M.R., Short,
R.D., Jones, F.R., Stollenwerk, M., Zabold, J. & Michaeli, W. 1996. An x-ray photoelectron spectroscopic
investigation into the chemical structure of deposits formed from
hexamethyldisiloxane/oxygen plasmas. Journal of Materials Science 31(7):
1879-1885.
Andrade, J.D. 1985. Principles
of protein adsorption. In Surface and Interfacial Aspects
of Biomedical Polymers, edited by Andrade, J.D. New York:
Plenum Press. pp. 1-80.
ASTM. 2010. E2108-10 Standard practice for calibration
of the electron binding-energy scale of an x-ray photoelectron
spectrometer. West Conshohocken, PA: ASTM.
Austin, B.B. 1978. Errors
in Practical Measurement in Science, Engineering and Technology. New
York: Wiley-Interscience Publication.
Beamson, G. & Briggs, D. 1992. High Resolution XPS of Organic Polymers. New York:
Wiley.
Dietrich, P.M., Horlacher, T., Girard-Lauriault,
P.L., Gross, T., Lippitz, A., Min, H., Wirth, T., Castille, R., Seeberger, P.H.
& Unger, W.E.S. 2011. Adlayers of dimannoside thiols on gold: Surface
chemical analysis. Langmuir 27(8): 4808-4815.
Fairley, N. 2003. XPS Lineshapes and Component Fitting in
Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Chichester:
IM Publications and SurfaceSpectra Limited.
Fairley, N. & Carrick, A. 2005. The Casa
Cookbook: Part 1: Recipes for XPS Data Processing. Cheshire: Acolyte
Science.
Giroux, T.A. & Cooper, S.L. 1991. Surface characterization of plasma-derivatized polyurethanes. Journal of Applied Polymer Science 43(1): 145-155.
Harrison, K. & Hazell, L.B. 1992. The determination of uncertainties in quantitative XPS/AES and its
impact on data acquisition strategy. Surface and Interface Analysis 18(5):
368-376.
Lin, J.C. & Chuang, W.H. 2000. Synthesis,
surface characterization, and platelet reactivity evaluation for the
self-assembled monolayer of alkanethiol with sulfonic acid functionality. Journal of Biomedical Materials
Research 51(3): 413-423.
Lin, J.C., Chen, Y.F. & Chen, C.Y.
1999. Surface characterization and platelet
adhesion studies of plasma polymerized phosphite and its copolymers with dimethylsulfate. Biomaterials 20(16): 1439-1447.
Lindberg, B.J., Hamrin, K., Johansson,
G., Gelius, U., Fahlman, A., Nordling, C. & Siegbahn, K. 1970. Molecular spectroscopy by means of ESCA
[electron spectroscopy for chemical analysis]. II. Sulfur compounds. Correlation of electron binding energy with structure. Physica
Scripta 1(5-6): 286-298.
Pelavin, M., Hendrickson, D.N.,
Hollander, J.M. & Jolly, W.L. 1970. Phosphorus 2p electron binding energies. Correlation with
extended Hueckel charges. Journal of Physical Chemistry 74(5):
1116-1121.
Perkins, C.L. 2009. Molecular anchors for self-assembled
monolayers on zno: A direct comparison of the thiol and phosphonic acid
moieties. Journal of Physical Chemistry C 113(42): 18276-18286.
Ratner, B.D., & Castner, D.G. 2003. Electron spectroscopy for chemical analysis. In Surface
Analysis: The Principal Techniques, edited by Vickerman, J.C.
Chichester: John Wiley and Sons. pp: 43-98.
Seredych, M., Wu, C.T., Brender, P.,
Ania, C.O., Vix-Guterl, C. & Bandosz, T.J. 2012. Role of phosphorus in carbon matrix in
desulfurization of diesel fuel using adsorption process. Fuel 92
(1):318-326.
Siow, K.S., Kumar, S. & Griesser, H.J. 2015. Low-pressure plasma methods for generating non-reactive hydrophilic
and hydrogel-like bio-interface coatings - a review. Plasma Processes
and Polymers 12(1): 8-24.
Siow, K.S., Leanne, B., Sunil, K. &
Hans, J.G. 2014. Deposition and XPS
and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma
Process Polymer 11(2): 133-141.
Siow, K.S., Britcher, L., Kumar, S. & Griesser, H.J. 2009.
Sulfonated surfaces by sulfur dioxide plasma surface treatment
of plasma polymer films. Plasma Process Polymer 6(9): 583-592.
Siow, K.S. 2007. Plasma based methods for producing controlled
polymer surfaces with sulfur and phosphorus containing chemical
groups and interactions between such surfaces and proteins. PhD
thesis. Ian Wark Research Institute, University of South Australia
(Unpublished).
Ward, A.J. & Short, R.D. 1994. A spectroscopic analysis
of plasma polymers prepared from a series of vinyl sulfones. Surface and
Interface Analysis 22(1-12): 477-482.
Wen, Y., Wang, B., Huang, C., Wang, L.
& Hulicova-Jurcakova, D. 2015. Synthesis of phosphorus-doped graphene and its wide potential
window in aqueous supercapacitors. Chemistry - A European Journal 21(1):
80-85.
*Corresponding
author; email: kimsiow@ukm.edu.my