Sains Malaysiana 47(9)(2018): 1953–1959
http://dx.doi.org/10.17576/jsm-2018-4709-02
Cytotoxic
Effect of Polyisoprenoids from Rhizophora
mucronata and Ceriops
tagal Leaves against WiDr
Colon Cancer Cell Lines
(Kesan Sitotoksik Poliisoprenoid daripada Daun Rhizophora mucronata dan Ceriops tagal terhadap Titisan Sel Kanser Kolon
WiDr)
DINI PERMATA
SARI1,
MOHAMMAD
BASYUNI2*,
POPPY
ANJELISA
ZAITUN
HASIBUAN1,
RIDHA
WATI2
& SUMARDI3
1Faculty of Pharmacy, Universitas Sumatera Utara Jl. Tri Dharma No. 5, Pintu 4 USU Campus, Medan 20155, Indonesia
2Department of Forestry, Faculty
of Forestry, Universitas Sumatera Utara,
Jl. Tri Dharma Ujung No. 1, Medan, North Sumatra, 20155, Indonesia
3Faculty of Pharmacy, Universitas Tjut Nyak Dhien, Jl. Rasmi No. 28, Medan, 20123
Indonesia
Received: 15 December 2017/Accepted:
16 May 2018
ABSTRACT
The mangrove plant is known
to produce secondary metabolite compounds, mainly isoprenoids. Polyisoprenoids (dolichol and polyprenol)
are known to have antimicrobial, anticancer and antiviral activity.
Therefore, this study aimed to determine the cytotoxic effects of
polyisoprenoids from Rhizophora mucronata and Ceriops tagal leaves by evaluating the induction of apoptosis and
cell cycle arrest and the inhibition of the expression of Bcl-2
and cyclin D1 in WiDr colon cancer cells.
Cell death was determined based on IC50 values
in MTT assays. The induction of apoptosis and alterations in
the cell cycle were observed by flow cytometry. The expression of
Bcl-2 and cyclin D1 proteins, which play a role in apoptosis and
cell cycle regulation, was observed by immunocytochemistry. The
results showed that polyisoprenoids from R. mucronata
and C. tagal leaves exhibited
toxicity against the WiDr cell line, with
IC50 values
of 278 ± 5.77 and 276 ± 9.54 μg/mL,
respectively. Polyisoprenoids from R.
mucronata and C. tagal leaves
significantly induced apoptosis and caused cell cycle arrest in
G0/G1 phase, while also decreasing the expression of Bcl-2 and cyclin
D1. Our results confirmed that polyisoprenoids
from R. mucronata and C. tagal leaves
have the potential to be developed as anticancer agents for colon
cancer.
Keywords: Apoptosis; Ceriops tagal; cytotoxic;
dolichol; Rhizophora mucronata
ABSTRAK
Tumbuhan bakau diketahui
menghasilkan sebatian
metabolit sekunder, terutamanya isoprenoid. Poliisoprenoid
(dolichol dan poliprenol)
diketahui mempunyai aktiviti antimikrob, antikanser dan antivirus.
Oleh itu, kajian ini
bertujuan untuk
menentukan kesan sitotoksik poliisoprenoid daripada daun Rhizophora
mucronata dan
Ceriops tagal dengan menilai induksi apoptosis tangkapan kitaran sel serta
kesan ekpresi
Bcl-2 dan siklin D1 dalam
titisan sel
kanser kolon WiDr.
Kematian
sel ditentukan berdasarkan nilai IC50 dalam asai MTT.
Induksi
apoptosis dan perubahan
dalam kitaran sel
diperhatikan dengan
aliran sitometri. Ekpresi Bcl-2 dan protein siklin D1 yang memainkan peranan dalam apoptosis dan kawal-selia kitaran sel diperhatikan melalui imunositokimia. Keputusan menunjukkan bahawa poliisoprenoid daripada daun R.
mucronata dan C. tagal mengeluarkan ketoksikan terhadap titisan sel WiDr,
masing-masing dengan
nilai IC50 278
± 5.77 dan 276 ± 9.54 μg/mL. Poliisoprenoid daripada daun
R. mucronata dan C. tagal
dengan ketara
mengaruh apoptosis dan menyebabkan tangkapan kitaran sel dalam
fasa G0/G1, selain
menurunkan ekspresi Bcl-2 dan siklin D1. Keputusan kami
mengesahkan bahawa poliisoprenoid daripada daun R. mucronata
dan C.
tagal mempunyai potensi untuk dibangunkan
sebagai agen
anti-kanser untuk kanser
kolon.
Kata kunci: Apoptosis; Ceriops tagal;
dolichol; Rhizophora mucronata;
sitotoksik
REFERENCES
Arifiyanto,
D., Basyuni, M., Sumardi,
Putri, L.A.P., Siregar, E.S., Risnasari, I. & Syahputra, I.
2017.
Occurrence and cluster analysis of palm oil (Elaeis
guineensis) fruit type using two-dimensional
thin layer chromatography. Biodiversitas
18: 1487-1492.
Bandaranayake, W.M. 1998. Traditional and medicinal uses of mangroves. Mangroves and
Salt Marshes 2: 133-148.
Basyuni,
M., Wati, R., Sagami, H., Sumardi,
Baba, S. & Oku, H. 2018. Diversity and abundance
of polyisoprenoid composition in coastal
plant species from North Sumatra, Indonesia. Biodiversitas
19: 1-11.
Basyuni,
M., Sagami, H., Baba, S. & Oku, H. 2017. Distribution and occurrence of new polyprenyl
acetone and other polyisoprenoids in Indonesian
mangroves. Dendrobiology
78: 18-31.
Basyuni, M., Sagami, H.,
Baba, S., Iwasaki, H. & Oku, H. 2016. Diversity
of polyisoprenoids in ten Okinawan Mangroves. Dendrobiology 75: 167-175.
Bishayee, A., Ahmed, S.,
Brankov, N. & Perloff,
M. 2011. Triterpenoids as potential agents for
the chemoprevention and therapy of breast cancer. Frontiers
in Bioscience: A Journal and Virtual Library 16: 980-986.
Corley, D.A., Jensen,
C.D., Marks, A.R., Zhao, W.K., Lee, J.K., Doubeni,
C.A., Zauber, A.G., Boer, J.D., Fireman,
B.H., Schottinger, J.E., Quinn, V.P., Ghai,
N.R., Levin, T.R. & Quesenberry, C.P.
2014. Adenoma detection rate and risk of colorectal cancer and death.
New England Journal of Medicine 370: 1298-1306.
Dhas,
S.P., Mukherjee, A.M.I.T.A.V.A. & Chandrasekaran,
N. 2013.
Photosynthesis of silver nanoparticles using Ceriops tagal and
its antimicrobial potential against human pathogens. International
Journal of Pharmacy and Pharmaceutical Sciences 5: 349-352.
Elson,
C.E., Peffley, D.M., Hentosh,
P. & Mo, H. 1999. Isoprenoid-mediated inhibition of mevalonate synthesis:
Potential application to cancer. Proceedings of the Society for
Experimental Biology and Medicine 221: 294-311.
Ferlay,
J., Soerjomataram, I., Dikshit,
R., Eser, S., Mathers, C., Rebelo,
M., Parkin, D.W., Forman, D. & Bray,
F. 2015. Cancer incidence
and mortality worldwide: Sources, methods and major patterns in
GLOBOCAN 2012. International Journal of Cancer 136: 359-386.
Harvey,
A.L., Edrada-Ebel, R. & Quinn, R.J.
2015. The re-emergence of natural products for drug discovery in the genomics
era. Nature Reviews Drug Discovery 14: 111-129.
He,
L., Wang, Y.S. & Wang, Q.J. 2007. In vitro antitumor
activity of triterpenes from Ceriops
tagal. Natural Product Research 21: 1228-1233.
Holstein,
S.A. & Hohl, R.J. 2004. Isoprenoids: Remarkable
diversity of form and function. Lipids 39: 293-309.
Howlader,
M., Islam, S., Ahmed, M., Kabir, A.N.M.,
Uddin, M. & Hossain, M. 2013. Antibacterial, cytotoxic, analgesic and diuretic activities
of Rhizophora mucronata Lam. bark. Indian Journal of Natural Products
and Resources 4: 229-232.
Iwamoto,
T. 2013. Clinical application of drug delivery systems in cancer
chemotherapy: Review of the efficacy and side effects of approved
drugs. Biological and Pharmaceutical Bulletin 36: 715-718.
Jakobisiak, M. & Golab, J. 2003.
Potential antitumor effects of statins.
International Journal of Oncology 23: 1055-1069.
Jiang, P., Mukthavaram,
R., Chao, Y., Nomura, N., Bharati, I.S.,
Fogal, V., Pastorino, S., Teng, D., Cong, X., Pingle, S.C.,
Kapoor, S., Shetty, K., Aggrawal, A.,
Vali, S., Abbasi, T., Chien, S. & Kesari, S. 2014. In vitro and in
vivo anticancer effects of mevalonate pathway modulation on
human cancer cells. British Journal of Cancer 111:
1562-1571.
Kuznecovs, S., Jegina,
K. & Kuznecovs, I. 2007. Inhibition
of P-glycoprotein by polyprenol in human
breast cancer cells. The Breast 16: 515-521.
Larsson, O. 1994.
Effects of isoprenoids on growth of normal human mammary epithelial
cells and breast cancer cells in vitro. Anticancer
Research 14: 123-128.
Laszczyk, M.N. 2009. Pentacyclic. Triterpenes of
the lupane, oleanane
and ursane group as tools in cancer therapy. Planta Medica 75: 1549-1560.
Leonard, R.C.F., Williams, S., Tulpule, A., Levine, A.M. & Oliveros,
S. 2009. Improving the therapeutic index of anthracycline chemotherapy:
Focus on liposomal doxorubicin (Myocet™).
The Breast 18: 218-224.
Liby, K.T., Yore,
M.M. & Sporn, M.B. 2007. Triterpenoids
and rexinoids as multifunctional agents
for the prevention and treatment of cancer. Nature Reviews
Cancer 7: 357-369.
Petronelli, A., Pannitteri, G. & Testa, U. 2009.
Triterpenoids as new promising anticancer drugs. Anti-Cancer
Drugs 20: 880-892.
Mo, H. & Elson,
C.E. 2004.
Studies of the isoprenoid-mediated inhibition of mevalonate synthesis
applied to cancer chemotherapy and chemoprevention. Experimental
Biology and Medicine 229: 567-585.
Nebula, M., Harisankar, H.S. & Chandramohanakumar,
N. 2013.
Metabolites and bioactivities of Rhizophoraceae
mangroves. Natural Products and Bioprospecting 3:
207-232.
Otto, T. & Sicinski, P. 2017. Cell cycle proteins as
promising targets in cancer therapy. Nature Reviews Cancer
17: 93-115.
Premanathan, M., Nakashima,
H., Kathiresan, K., Rajendran,
N. & Yamamoto, N. 1996.
In vitro anti human immunodeficiency virus
activity of mangrove plants. Indian Journal of Medical
Research 103: 278-281.
Qui, P., Guan,
H., Dong, P., Li, S., Ho, C.T., Pan, M.S., McClements,
D.J. & Xiao, H. 2011.
The p53-, Bax- and p21-dependent
inhibition of colon cancer cell growth by 5-hydroxy polymethoxyflavones.
Molecular Nutrition Food Research
55: 613-22.
Reddy, L., Odhav, B. & Bhoola, K.D. 2003.
Natural products for cancer prevention: A global perspective. Pharmacology
& Therapeutics 99: 1-13.
Safatov, A.S., Boldyrev,
A.N., Bulychev, L.E., Buryak,
G.A, Kukina, T.P., Poryvaev,
V.D., P’Yankov, O.V., Raldugin,
V.A., Ryzhikov, A.B., Sergeev,
A.N., Shishkina, L.N., Tolstikov,
G.A. & Zhukov, V.A. 2005. A prototype prophylactic
anti-influenza preparation in aerosol form on the basis of Abiessibirica
polyprenols. Journal
of Aerosol Medicine 18: 55-62.
Sakagami, H., Jiang, Y.,
Kusama, K., Atsumi,
T., Ueha, T., Toguchi,
M., Iwakura, I., Satoh, K., Fukai, T.
& Nomura, T. 2000.
Induction of apoptosis by flavones, flavonols
(3-hydroxyflavones) and isoprenoid-substituted flavonoids in human
oral tumor cell lines. Anticancer Research 20: 271-277.
Setzer, W.N. & Setzer, M.C. 2003. Plant-derived triterpenoids as potential
antineoplastic agents. Mini-Reviews in Medicinal Chemistry
3: 540-556.
Siegel, R.L.,
Miller, K.D., Fedewa, S.A., Ahnen,
D.J., Meester, R.G., Barzi,
A. & Jemal, A. 2017. Colorectal cancer
statistics. 2017. CA: Cancer Journal for Clinicians 67:
177-193.
Singh, G., Gupta,
P., Rawat, P., Puri,
A., Bhatia, G. & Maurya, R. 2007. Antidyslipidemic
activity of polyprenol from Cocciniagrandis
in high-fat diet fed hamster model. Phytomedicine
14: 792-798.
Sudheer, N.S., Philip,
R. & Singh, I.B. 2011.
In vivo screening of mangrove plants for anti WSSV activity
in Penaeus monodon, and evaluation of Ceriops tagal as a
potential source of antiviral molecules. Aquaculture 311:
36-41.
Tiwari, P., Tamrakar, A.K., Ahmad, R., Srivastava, M.N., Kumar, R., Lakshmi,
V. & Srivastava, A.K. 2008. Antihyperglycaemic activity of Ceriops tagal in normoglycaemic and
streptozotocin-induced diabetic rats. Medicinal
Chemistry Research 17: 74-84.
Ulukaya, E., Ozdikicioglu, F., Oral, A.Y. & Demirci,
M. 2008.
The MTT assay yields a relatively lower result of growth inhibition
than the ATP assay depending on the chemotherapeutic drugs tested.
Toxicology in Vitro 22: 232-239.
Vermuelen, K., Van Bockstaele, D.R. & Berneman,
Z.N. 2003.
The cell cycle: A review of regulation, deregulation and therapeutic
targets in cancer. Cell Proliferation 36: 131-149.
Wiemer, A.J., Hohl, R.J. & Wiemer, D.F. 2009. The intermediate enzymes of isoprenoid metabolism
as anticancer targets. Anticancer Agents in Medisinal Chemistry 9: 525-542.
Zhang,
C.X., Yan, S.J., Zhang, G.W., Lu, W.G., Su, J.Y. & Zeng, L.M.
2005. Cytototxic diterpenoid
from soft coral Sinularia microclavata.
Journal of Natural Products 68: 1087-1089.
*Corresponding author;
email: m.basyuni@usu.ac.id
|