Sains Malaysiana 47(9)(2018): 1999–2008

http://dx.doi.org/10.17576/jsm-2018-4709-07

 

Optimisation of Cinnamaldehyde-in-water Nanoemulsion Formulation using Central Composite Rotatable Design

(Pengoptimuman Formulasi Nanoemulsi Sinamaldehid dalam Air Menggunakan Reka Bentuk Komposit Putaran Tengah)

 

ASMAWATI M. SAIL1,2, WAN AIDA WAN MUSTAPHA1*, SALMA MOHAMAD YUSOP1,

MOHAMAD YUSOF MASKAT1 & AHMAD FUAD SHAMSUDDIN3,4

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Agricultural Product Technology Department, Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia

 

3Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia

4Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur Royal College of Medicine Perak, No 3 Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia

 

Received: 12 September 2017/Accepted: 1 June 2018

 

 

ABSTRACT

Thirteen formulations of cinnamaldehyde/non-ionic surfactant/water system nanoemulsions were prepared using high-pressure homogenisation. The result showed that varying the cinnamaldehyde/surfactant ratio had effect significantly (p<0.05) to mean droplet diameter, polidispersity index, ζ-potential, turbidity and whiteness index, while no significant effect (p>0.05) to viscosity. The mean droplet diameter ranged from 50.48 to 106.4 nm, polydispersity index from 0.06 to 0.28 and ζ-potential from -4.11 to -6.98 mV. The smallest droplet size was produced using 5% cinnamaldehyde and 5% Tween 80. Response surface for droplet diameter showed that the higher the cinnamaldehyde and surfactant concentrations, the larger the droplet diameter, polydispersity index and whiteness index. However, the ζ-potential increased as the cinnamaldehyde concentration decreased and Tween 80 increased. Increasing the cinnamaldehyde concentration led to an increase in turbidity. Formulation of 5% cinnamaldehyde and 6.23% Tween 80 gave no observable separation of the nanoemulsion with minimum droplet size, polidispersity index, viscosity, turbidity, whiteness index and maximum ζ-potential in modulus. The stability of the optimum formulation was sustained for 10 days upon storage at 4°C. The values of droplet diameter, PDI and ζ-potential were 55.50 nm, 0.08 and -5.38 mV, respectively.

 

Keywords: Cinnamaldehyde; formation; high-pressure homogenisation; nanoemulsion; optimization

 

ABSTRAK

Tiga belas formulasi nanoemulsi sistem sinamaldehid/surfaktan bukan ion/air telah disediakan menggunakan homogenisasi tekanan tinggi. Keputusan menunjukkan bahawa perlakuan nisbah sinamaldehid/surfaktan memberi kesan yang signifikan (p<0.05) terhadap rerata diameter titisan, indeks polidispersiti, ζ-potensial, kekeruhan dan indeks keputihan, namun tidak berpengaruh signifikan (p>0.05) terhadap kepekatan. Nilai rerata diameter titisan berkisar antara 50.48 hingga 106.4 nm, indeks polidispersiti daripada 0.06 hingga 0.28, dan ζ-potensial dari -4.11 hingga -6.98 mV. Saiz titisan terkecil dihasilkan menggunakan sinamaldehid 5% dan 5% Tween 80. Tindak balas permukaan untuk diameter titisan menunjukkan bahawa lebih tinggi kepekatan sinamaldehid dan surfaktan, semakin besar pula diameter titisan, indeks polidispersiti dan indeks keputihan. Walau bagaimanapun, potensi ζ meningkat apabila kepekatan sinamaldehid menurun dan Tween 80 meningkat. Peningkatan kepekatan sinamaldehid menyebabkan peningkatan kekeruhan. Formulasi sinamaldehid 5% dan 6.23% Tween 80 tidak ditemukan adanya pengasingan nanoemulsi dengan diameter saiz titisan, indeks polidispersiti, kelikatan, kekeruhan dan indeks keputihan yang minimum dan maksimum nilai ζ-potensial dalam modulus. Kestabilan formulasi optimum dikekalkan selama 10 hari tempoh penyimpanan pada suhu 4°C. Nilai diameter titisan, indeks polidispersiti dan ζ-potensial masing-masing adalah 55.50 nm, 0.08 dan -5.38 mV.

 

Kata kunci: Homogenisasi tekanan tinggi; nanoemulsi; pembentukan; pengoptimuman; sinamaldehid

REFERENCES

Abd-Elsalam, K.A. & Khokhlov, A.R. 2015. Eugenol oil nanoemulsion: Antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Application Nanoscience 5: 255-265.

Asmawati, M.W.A.W., Yusop, S.M., Maskat, M.Y. & Shamsuddin, A.F. 2014. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. AIP Conference Proceeding 1614: 244-250.

Delmas, T., Piraux, H., Couffin, A., Texier, I., Vinet, F., Poulin, P., Cates, M.E. & Bibette, J. 2011. How to prepare and stabilize very small nanoemulsions. Langmuir 27(5): 1683-1692.

Donsi, F., Annunziata, M., Vincensi, M. & Ferrari, G. 2012. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology 159: 342-350.

Ee, S.L., Duan, X., Liew, J. & Nguyen, Q.D. 2008. Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal 140: 626-631.

Floury, J., Desrumaux, A. & Lardières, J. 2000. Effect of high-pressure homogenization on droplet size distribution and rheological properties of model oil-in-water emulsions. Innovative Food Science & Emerging Technologies 1: 127- 134.

Garti, N., Spernath, A., Aserin, A. & Lutz, R. 2005. Nano-sized self assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter. 1: 206-218.

Ghosh, V., Mukherjee, A. & Chandrasekaran, N. 2013. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonic Sonochemistry 20: 338-344.

Gutiérrez, J.M., González, C., Maestro, A., Solè, I., Pey, C.M. & Nolla, J. 2008. Nano-emulsions: New applications and optimization of their preparation. Current Opinion Colloid Interface Science 13: 245-251.

Guttoff, M., Saberi, A.H. & McClements, D.J. 2015. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chemistry 171: 117-122.

Heurtault, B., Saulnier, P., Pech, B., Proust, J.E. & Benoit, J.P. 2003. Physicochemical stability of colloidal lipid particles. Biomaterials 24: 4283-4300.

Huang, Q., Yu, H. & Ru, Q. 2010. Bioavailability and delivery of nutraceuticals using nanotechnology. Journal Food Science 75: R50-R57.

Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R. & Simons, L. 2008. The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies 9(2): 170-175.

Komaiko, J. & McClements, D.J. 2015a. Food grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: Optical properties, rheology, and stability. Food Hydrocolloids 46: 67-75.

Komaiko, J. & McClements, D.J. 2015b. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering 146: 122-128.

Komaiko, J. & McClements, D.J. 2014. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water system. Journal of Colloid and Interface Science 425: 59-66.

Kourniatis, L.R., Spinelli, L.S., Piombini, C.R. & Mansur, C.R. 2010. Formation of orange oil-in-water nanoemulsions using nonionic surfactant mixtures by high pressure homogenizer. Colloid Journal 72(3): 396-402.

Kwon, S.S., Kong, B.J., Cho, W.G. & Park, S.N. 2015. Formation of stable hydrocarbon oil-in-water nanoemulsions by phase inversion composition method at elevated temperature. Korean Journal of Chemical Engineering 32(3): 540-546.

Li, P. & Chiang, B. 2012. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonic Sonochemistry 19: 192-197.

Mao, L., Yang, J., Xu, D., Yuan, F. & Gao, Y. 2009. Effect of homogenization models and emulsifiers on the physicochemical properties of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technology and Biotechnology 47: 336-342.

Maté, J., Periago, P.M. & Palop, A. 2016. When nanoemulsified, D-limonene reduces Listeria monocytogenes heat resistance about one hundred times. Food Control 59: 824-828.

McClements, D.J. 2005. Food Emulsions: Principles, Practice, and Techniques. 2nd ed. Boca Raton: CRC Press.

Mei, Z., Liu, S., Wang, L., Jiang, J., Xu, J. & Sun, D. 2011. Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science 361: 565-572.

Neethirajan, S. & Jayas, D.S. 2011. Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology 4(1): 39-47.

Otoni, C.G., de Moura, M.R., Camilloto, G.P., Cruz, R.S., Lorevice, M.V., Soares, N.F.F. & Mattoso, L.H.C. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41: 188-194.

Polychniatou, V. & Tzia, C. 2014. Study of formulation and stability of co-surfactant free water-in-olive oil nano- and submicron emulsions with food grade non-ionic surfactants. Journal of the American Oil Chemists Society 91: 79-88.

Qian, C. & McClement, D.J. 2011. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 25: 1000-1008.

Rebolleda, S., Sanz, M.T., Benito, J.M., Beltrán, S., Escudero, I. & San-José, M.L.G. 2015. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chemistry 167: 16-23.

Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R. & Martín- Belloso, O. 2013a. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids 30: 401-407.

Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R. & Martín- Belloso, O. 2013b. Physicochemical characterization of lemongrass essential oil-alginate nanoemulsions: Effect of ultrasound processing parameters. Food and Bioprocess Technology 6(9): 2439-2446.

Sari, T.P., Mann, B., Kumar, R., Sing, R.R.B., Sharma, R., Bhardwaj, M. & Athira, S. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43: 540-546.

Shah, P., Bhalodia, D. & Shelat, P. 2010. Nanoemulsion: A pharmaceutical review. Set. Rev. Pharm. 1: 24-32.

Silva, H.D., Cerqueira, M.Â. & Vicente, A.A. 2012. Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology 5: 854-867.

Singh, G., Maurya, S., deLampasona, M.P. & Catalan, C.A.N. 2007. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology 45: 1650-1661.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N. & Garcia-Celma, M.J. 2005. Nano-emulsions. Current Opinion in Colloid & Interface Science 10: 102-110.

Sow, L.C., Tirtawinata, F., Yang, H., Shao, Q. & Wang, S. 2017. Carvacrol nanoemulsion combined with acid electrolyzed water to inactivate bacteria, yeast in vitro and native microflora of shredded cabbages. Food Control 76: 88-95.

Tadros, T., Izquierdo, P., Esquena, J. & Solans, C. 2004. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 108-109: 303-318.

Tang, S.Y., Shridharan, P. & Sivakumar, M. 2013. Impact of process parameters in the generation of novel aspirin nanoemulsions - Comparative studies between ultrasound cavitation and microfluidizer. Ultrasonic Sonochemistry 20: 485-497.

Vanhecke, T., Landers, J.J., Hamouda, T. & Baker, J.R. 2002. The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia 155: 195-201.

Vargas, M., Cháfer, M., Albors, A., Chiralt, A. & González-Martínez, C. 2008. Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. International Dairy Journal 18(12): 1146-1152.

Wei, Q.Y., Xiong, J.J., Jiang, H., Zhang, C. & Ye, W. 2011. The antimicrobial activities of the cinnamaldehyde adducts with amino acids. International Journal of Food Microbiology 150: 164-170.

Weiss, J., Gaysinsky, S., Davidson, M. & McClements, J. 2009. Chapter 24 - Nanostructured encapsulation systems: Food antimicrobials. In Global Issues in Food Science and Technology, edited by Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K. & Colonna, P. New York: Academic Press. pp. 425-479.

Yang, Y. & McClements, D.J. 2013. Encapsulation of vitamin E in edible emulsion fabricated using a natural surfactant. Food Hydrocolloids 30: 712-720.

Yildirim, S.T., Oztop, M.H. & Soyer, Y. 2017. Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. LWT - Food Science and Technology 84: 122-128.

Zahi, M.R., El Hattab, M., Liang, H. & Yuan, Q. 2017. Enhancing the antimicrobial activity of D-limonene nanoemulsion with the inclusion of e-polylysine. Food Chemistry 221: 18-23.

 

 

*Corresponding author; email: wanaidawm@ukm.edu.my

 

 

 

 

 

 

previous