Sains Malaysiana 47(9)(2018): 1999–2008
http://dx.doi.org/10.17576/jsm-2018-4709-07
Optimisation of Cinnamaldehyde-in-water Nanoemulsion
Formulation using Central Composite Rotatable Design
(Pengoptimuman Formulasi Nanoemulsi Sinamaldehid dalam Air Menggunakan Reka Bentuk Komposit
Putaran Tengah)
ASMAWATI M.
SAIL1,2, WAN AIDA
WAN
MUSTAPHA1*,
SALMA
MOHAMAD
YUSOP1,
MOHAMAD YUSOF
MASKAT1
& AHMAD FUAD SHAMSUDDIN3,4
1School of Chemical Science and Food
Technology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Agricultural Product
Technology Department, Faculty of Agriculture, Syiah
Kuala University, Banda Aceh 23111, Indonesia
3Centre for Drug
Delivery Research, Faculty of Pharmacy, Universiti
Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia
4Faculty of Pharmacy
and Health Science, Universiti Kuala Lumpur Royal College of Medicine
Perak, No 3 Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia
Received: 12 September
2017/Accepted: 1 June 2018
ABSTRACT
Thirteen formulations of cinnamaldehyde/non-ionic surfactant/water system nanoemulsions were prepared using high-pressure homogenisation. The result showed that varying the cinnamaldehyde/surfactant ratio had effect significantly (p<0.05) to
mean droplet diameter, polidispersity
index, ζ-potential, turbidity and whiteness index, while no
significant effect (p>0.05) to viscosity. The mean droplet
diameter ranged from 50.48 to 106.4 nm, polydispersity index from
0.06 to 0.28 and ζ-potential
from -4.11 to -6.98 mV. The smallest droplet size was produced using
5% cinnamaldehyde and 5% Tween 80. Response
surface for droplet diameter showed that the higher the cinnamaldehyde and surfactant concentrations, the larger the
droplet diameter, polydispersity
index and
whiteness index.
However, the ζ-potential increased as the cinnamaldehyde
concentration decreased and Tween 80 increased. Increasing the cinnamaldehyde concentration led to an increase in turbidity.
Formulation of 5% cinnamaldehyde and 6.23%
Tween 80 gave no observable separation of the nanoemulsion
with minimum droplet size, polidispersity
index, viscosity, turbidity, whiteness index and maximum ζ-potential in modulus. The stability of the optimum
formulation was sustained for 10 days upon storage at 4°C. The values of droplet diameter, PDI
and ζ-potential were 55.50 nm, 0.08 and
-5.38 mV, respectively.
Keywords: Cinnamaldehyde; formation; high-pressure homogenisation; nanoemulsion; optimization
ABSTRAK
Tiga belas formulasi
nanoemulsi sistem
sinamaldehid/surfaktan bukan ion/air telah disediakan menggunakan homogenisasi tekanan tinggi. Keputusan menunjukkan
bahawa perlakuan
nisbah sinamaldehid/surfaktan memberi kesan yang signifikan (p<0.05) terhadap
rerata diameter titisan, indeks polidispersiti, ζ-potensial, kekeruhan dan indeks keputihan,
namun tidak
berpengaruh signifikan (p>0.05) terhadap
kepekatan. Nilai rerata diameter titisan berkisar antara 50.48 hingga 106.4 nm, indeks polidispersiti daripada 0.06 hingga 0.28, dan ζ-potensial
dari -4.11 hingga
-6.98 mV. Saiz titisan
terkecil dihasilkan
menggunakan sinamaldehid 5% dan 5% Tween 80. Tindak balas
permukaan untuk
diameter titisan menunjukkan bahawa lebih tinggi
kepekatan sinamaldehid
dan surfaktan, semakin besar pula diameter titisan, indeks polidispersiti dan indeks keputihan. Walau bagaimanapun, potensi ζ meningkat apabila kepekatan sinamaldehid menurun dan Tween 80 meningkat. Peningkatan kepekatan sinamaldehid
menyebabkan peningkatan
kekeruhan. Formulasi sinamaldehid 5% dan 6.23% Tween
80 tidak ditemukan
adanya pengasingan nanoemulsi dengan diameter saiz titisan, indeks
polidispersiti, kelikatan,
kekeruhan dan indeks
keputihan yang minimum dan
maksimum nilai ζ-potensial dalam modulus. Kestabilan formulasi optimum dikekalkan selama 10 hari tempoh penyimpanan pada suhu 4°C. Nilai diameter titisan, indeks
polidispersiti dan
ζ-potensial masing-masing adalah 55.50 nm, 0.08 dan -5.38
mV.
Kata kunci: Homogenisasi
tekanan tinggi;
nanoemulsi; pembentukan; pengoptimuman; sinamaldehid
REFERENCES
Abd-Elsalam, K.A.
& Khokhlov, A.R. 2015. Eugenol
oil nanoemulsion: Antifungal activity
against Fusarium oxysporum f. sp.
vasinfectum and phytotoxicity
on cottonseeds. Application Nanoscience 5: 255-265.
Asmawati, M.W.A.W.,
Yusop, S.M., Maskat, M.Y. & Shamsuddin, A.F. 2014. Characteristics of
cinnamaldehyde nanoemulsion prepared
using APV-high pressure homogenizer and ultra turrax.
AIP Conference Proceeding 1614: 244-250.
Delmas, T.,
Piraux, H., Couffin,
A., Texier, I., Vinet,
F., Poulin, P., Cates, M.E. & Bibette,
J. 2011. How to prepare and stabilize very small nanoemulsions. Langmuir 27(5): 1683-1692.
Donsi, F.,
Annunziata, M., Vincensi, M. & Ferrari,
G. 2012. Design of nanoemulsion-based delivery
systems of natural antimicrobials: Effect of the emulsifier. Journal
of Biotechnology 159: 342-350.
Ee, S.L., Duan, X., Liew,
J. & Nguyen, Q.D. 2008. Droplet size and stability
of nano-emulsions produced by the temperature phase inversion
method. Chemical Engineering Journal 140: 626-631.
Floury, J., Desrumaux, A. & Lardières, J. 2000. Effect of high-pressure
homogenization on droplet size distribution and rheological properties
of model oil-in-water emulsions. Innovative
Food Science & Emerging Technologies 1: 127- 134.
Garti,
N., Spernath, A., Aserin,
A. & Lutz, R. 2005. Nano-sized self assemblies
of nonionic surfactants as solubilization
reservoirs and microreactors for food
systems. Soft Matter. 1: 206-218.
Ghosh, V., Mukherjee,
A. & Chandrasekaran, N. 2013. Ultrasonic emulsification
of food-grade nanoemulsion formulation
and evaluation of its bactericidal activity. Ultrasonic
Sonochemistry 20: 338-344.
Gutiérrez, J.M.,
González, C., Maestro, A., Solè, I., Pey, C.M. & Nolla, J. 2008. Nano-emulsions: New applications
and optimization of their preparation. Current Opinion Colloid
Interface Science 13: 245-251.
Guttoff, M., Saberi, A.H. & McClements, D.J.
2015.
Formation of vitamin D nanoemulsion-based
delivery systems by spontaneous emulsification: Factors affecting
particle size and stability. Food Chemistry 171: 117-122.
Heurtault, B., Saulnier, P., Pech, B., Proust,
J.E. & Benoit, J.P. 2003. Physicochemical stability of colloidal lipid particles.
Biomaterials 24: 4283-4300.
Huang, Q., Yu,
H. & Ru, Q. 2010.
Bioavailability and delivery of nutraceuticals
using nanotechnology. Journal Food Science 75: R50-R57.
Kentish, S., Wooster,
T.J., Ashokkumar, M., Balachandran, S.,
Mawson, R. & Simons, L. 2008.
The use of ultrasonics
for nanoemulsion preparation. Innovative Food Science
& Emerging Technologies 9(2): 170-175.
Komaiko, J. & McClements, D.J. 2015a. Food grade nanoemulsion
filled hydrogels formed by spontaneous emulsification and gelation:
Optical properties, rheology, and stability. Food Hydrocolloids
46: 67-75.
Komaiko, J. & McClements, D.J. 2015b. Low-energy formation of edible
nanoemulsions by spontaneous emulsification: Factors influencing
particle size. Journal of Food Engineering 146: 122-128.
Komaiko, J. & McClements, D.J. 2014. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant,
and water system. Journal of Colloid and Interface Science 425:
59-66.
Kourniatis, L.R., Spinelli, L.S.,
Piombini, C.R. & Mansur, C.R. 2010. Formation
of orange oil-in-water nanoemulsions using
nonionic surfactant mixtures by high pressure homogenizer.
Colloid Journal 72(3): 396-402.
Kwon, S.S., Kong,
B.J., Cho, W.G. & Park, S.N. 2015. Formation of
stable hydrocarbon oil-in-water nanoemulsions
by phase inversion composition method at elevated temperature.
Korean Journal of Chemical Engineering 32(3): 540-546.
Li, P. & Chiang,
B. 2012.
Process optimization and stability of D-limonene-in-water
nanoemulsions prepared by ultrasonic emulsification using
response surface methodology. Ultrasonic Sonochemistry
19: 192-197.
Mao, L., Yang, J., Xu, D., Yuan,
F. & Gao, Y. 2009. Effect
of homogenization models and emulsifiers on the physicochemical
properties of β-carotene nanoemulsions
prepared by high pressure homogenization. Food Technology
and Biotechnology 47: 336-342.
Maté, J., Periago,
P.M. & Palop, A. 2016. When
nanoemulsified, D-limonene reduces Listeria
monocytogenes heat resistance about one hundred times. Food
Control 59: 824-828.
McClements, D.J. 2005. Food Emulsions: Principles,
Practice, and Techniques. 2nd ed. Boca Raton: CRC Press.
Mei, Z., Liu,
S., Wang, L., Jiang, J., Xu, J. & Sun, D. 2011. Preparation of
positively charged oil/water nano-emulsions
with a sub-PIT method. Journal of Colloid and Interface
Science 361: 565-572.
Neethirajan, S. & Jayas, D.S. 2011. Nanotechnology for the food and
bioprocessing industries. Food and Bioprocess Technology
4(1): 39-47.
Otoni, C.G., de Moura,
M.R., Camilloto, G.P., Cruz, R.S., Lorevice, M.V., Soares, N.F.F. &
Mattoso, L.H.C. 2014. Antimicrobial
and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde
nanoemulsion edible composite films.
Food Hydrocolloids 41: 188-194.
Polychniatou, V. & Tzia, C. 2014.
Study of formulation and stability of co-surfactant free water-in-olive
oil nano- and submicron emulsions with food grade non-ionic surfactants.
Journal of the American Oil Chemists Society 91: 79-88.
Qian, C. &
McClement, D.J. 2011.
Formation of nanoemulsions stabilized
by model food-grade emulsifiers using high-pressure homogenization:
Factors affecting particle size. Food Hydrocolloids 25: 1000-1008.
Rebolleda, S., Sanz, M.T., Benito, J.M., Beltrán,
S., Escudero, I. & San-José, M.L.G.
2015. Formulation and characterisation of wheat
bran oil-in-water nanoemulsions.
Food Chemistry 167: 16-23.
Salvia-Trujillo,
L., Rojas-Graü, A., Soliva-Fortuny,
R. & Martín- Belloso, O. 2013a. Effect of processing
parameters on physicochemical characteristics of microfluidized
lemongrass essential oil-alginate nanoemulsions.
Food Hydrocolloids 30: 401-407.
Salvia-Trujillo,
L., Rojas-Graü, A., Soliva-Fortuny,
R. & Martín- Belloso, O. 2013b. Physicochemical characterization
of lemongrass essential oil-alginate nanoemulsions:
Effect of ultrasound processing parameters. Food and Bioprocess
Technology 6(9): 2439-2446.
Sari, T.P., Mann, B., Kumar, R.,
Sing, R.R.B., Sharma, R., Bhardwaj, M. & Athira,
S. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids
43: 540-546.
Shah, P., Bhalodia,
D. & Shelat, P. 2010. Nanoemulsion:
A pharmaceutical review. Set. Rev. Pharm. 1: 24-32.
Silva, H.D., Cerqueira, M.Â. & Vicente, A.A. 2012. Nanoemulsions
for food applications: Development and characterization. Food
and Bioprocess Technology 5: 854-867.
Singh, G., Maurya, S., deLampasona, M.P. &
Catalan, C.A.N. 2007.
A comparison of chemical, antioxidant and antimicrobial studies
of cinnamon leaf and bark volatile oils, oleoresins and their constituents.
Food and Chemical Toxicology 45: 1650-1661.
Solans, C., Izquierdo, P., Nolla, J., Azemar, N. & Garcia-Celma, M.J.
2005.
Nano-emulsions. Current Opinion in Colloid & Interface
Science 10: 102-110.
Sow, L.C., Tirtawinata, F., Yang, H., Shao, Q. & Wang, S. 2017. Carvacrol nanoemulsion combined
with acid electrolyzed water to inactivate bacteria, yeast in
vitro and native microflora of shredded cabbages. Food Control
76: 88-95.
Tadros, T., Izquierdo, P., Esquena, J. &
Solans, C. 2004. Formation and stability of nano-emulsions. Advances in Colloid and Interface
Science 108-109: 303-318.
Tang, S.Y., Shridharan, P. & Sivakumar,
M. 2013.
Impact of process parameters in the generation of novel aspirin nanoemulsions - Comparative studies between ultrasound cavitation
and microfluidizer. Ultrasonic
Sonochemistry 20: 485-497.
Vanhecke, T., Landers,
J.J., Hamouda, T. & Baker, J.R. 2002. The fungicidal
activity of novel nanoemulsion (X8W60PC)
against clinically important yeast and filamentous fungi.
Mycopathologia 155: 195-201.
Vargas,
M., Cháfer, M., Albors,
A., Chiralt, A. & González-Martínez,
C. 2008. Physicochemical and sensory characteristics of yoghurt produced
from mixtures of cows’ and goats’ milk. International Dairy Journal
18(12): 1146-1152.
Wei, Q.Y., Xiong, J.J., Jiang, H., Zhang, C. & Ye, W. 2011. The antimicrobial activities of
the cinnamaldehyde adducts with amino
acids. International Journal of Food Microbiology 150: 164-170.
Weiss, J., Gaysinsky, S., Davidson, M. & McClements,
J. 2009. Chapter 24 - Nanostructured encapsulation systems: Food
antimicrobials. In Global Issues in Food Science and Technology,
edited by Barbosa-Cánovas, G., Mortimer,
A., Lineback, D., Spiess, W., Buckle,
K. & Colonna, P. New York: Academic
Press. pp. 425-479.
Yang, Y. &
McClements, D.J. 2013. Encapsulation of vitamin E in edible emulsion fabricated
using a natural surfactant. Food Hydrocolloids 30: 712-720.
Yildirim, S.T., Oztop, M.H. & Soyer, Y. 2017. Cinnamon oil nanoemulsions
by spontaneous emulsification: Formulation, characterization and
antimicrobial activity. LWT - Food Science and Technology 84:
122-128.
Zahi, M.R., El Hattab,
M., Liang, H. & Yuan, Q. 2017. Enhancing the antimicrobial activity of D-limonene
nanoemulsion with the inclusion of e-polylysine. Food Chemistry 221: 18-23.
*Corresponding author; email: wanaidawm@ukm.edu.my
|