Sains Malaysiana 47(9)(2018): 2017–2026
http://dx.doi.org/10.17576/jsm-2018-4709-09
Chemical
Changes and Optimisation of Acetous
Fermentation Time and Mother of Vinegar Concentration in the Production
of Vinegar-like Fermented Papaya Beverage
(Perubahan Kimia dan Pengoptimuman Masa dan Kepekatan Ibu Cuka untuk Fermentasi
Asetus dalam Penghasilan Minuman Buah Betik
Terfermentasi Serupa-Cuka)
CHING TING
KONG1,
CHIN
WAI
HO1,
JIN
WEI ALVIN
LING1,
AZWAN
LAZIM2, SHAZRUL
FAZRY3 & SENG
JOE
LIM1*
1Centre for Biotechnology and Functional
Food, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre for Advanced Materials and
Renewable Resources, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Tasik Chini
Research Centre, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 5 February 2018/Accepted:
31 May 2018
ABSTRACT
Fermentation has been long
used as a method to produce beverage of various health benefits.
In this research, ripe papaya (Carica papaya)
was fermented through alcoholic fermentation using Saccharomyces
cerevisiae, followed by acetous fermentation using Acetobacter
spp. from mother of vinegar, to reduce wastage of this highly
perishable Malaysian fruit. The papaya juice was pasteurised
prior to the fermentation process. Optimisation
of acetous fermentation was carried out using the response surface
methodology (RSM)
with central composite rotatable design (CCRD). Acetous fermentation time
had shown significant effect on all the chemical characteristics
while mother of vinegar concentration did not significantly effect
on all the chemical characteristics. The vinegar-like fermented
papaya beverage which was produced at the optimum point (Fermentation
time = 70.80 h and concentration = 40% mother of vinegar) contained
0.37 ± 0.01% reducing sugar, 3.54 ± 0.36% ethanol, 2.46
± 0.07% acetic acid, 327.89 ± 3.60 mg GAE/
L total phenolic, 2.32 ± 0.17 mg/100 mL ascorbic acid and 52.40
± 0.23% mg AA/100
mL free-radical scavenging activity. In conclusion, vinegar-like
fermented papaya beverage was successfully produced and its chemical
compositions changed from papaya juice to wine and vinegar-like
beverage with increased bioactive compounds and antioxidative
activity.
Keywords: Acetous; alcohol;
fermentation; optimisation; papaya
ABSTRAK
Fermentasi merupakan kaedah
yang telah lama digunakan
untuk menghasilkan minuman dengan pelbagai faedah kesihatan. Dalam kajian
ini, buah
betik (Carica papaya) yang ranum
telah difermentasi melalui fermentasi alkohol oleh Saccharomyces cerevisiae dan
fermentasi asetus
oleh Acetobacter spp. daripada ibu cuka bagi
mengurangkan pembaziran
buah Malaysia yang mudah rosak ini. Jus betik telah dipasteurkan
sebelum diperlakukan
dengan proses fermentasi. Pengoptimuman fermentasi asetus telah dijalankan melalui kaedah respons permukaan (RSM)
dengan reka
bentuk berputar komposit berpusat (CCRD).
Masa fermentasi asetus
mempunyai kesan
yang bererti kepada semua ciri kimia
manakala kepekatan
ibu cuka tidak
memberi kesan
yang signifikan ke atas
semua ciri
kimia tersebut. Minuman terfermentasi buah betik serupa-cuka
yang dihasilkan pada
titik optimum fermentasi asetus (Masa fermentasi = 70.80
jam dan kepekatan
= 40% ibu cuka) mengandungi
0.37 ± 0.01% gula, 3.54 ± 0.36% etanol,
2.46 ± 0.07% asid asetik,
327.89 ± 3.60 mg GAE/ L jumlah
fenolik, 2.32 ± 0.17 mg/100 mL asid
askorbik dan
52.40 ± 0.23% mg AA/100 mL aktiviti pemerangkapan radikal bebas DPPH. Secara kesimpulannya,
minuman terfermentasi
buah betik serupa-cuka
telah berjaya
dihasilkan dan perubahan komposisi kimia daripada jus kepada wain dan minuman betik serupa-cuka
menunjukkan peningkatan
sebatian bioaktif dan aktiviti antioksida.
Kata kunci: Alkohol;
asetus; buah
betik; cuka; fermentasi;
pengoptimuman
REFERENCES
Akubor,
P.I. 2017.
Characterization of fruit wines from baobab (Adansonia
digitata), pineapple (Ananas
sativus) and carrot (Daucus
carota) tropical fruits. Asian
Journal of Biotechnology and Bioresource
Technology 1(3): 1-10.
Bal, L., Ahmad, T.,
Senapati, A. & Pandit,
P. 2014. Evaluation of quality attributes during storage of guava
nectar cv. Lalit from different pulp and TSS ratio. Journal of Food
Processing and Technology 5: 329.
Basulto,
F.S., Duch, E.S., Y-Gil, F.E., Diaz
Plaza, R., Saavedra, A.L. & Santamaria, J.M. 2009. Postharvest ripening and maturity indices for Maradol
papaya. Interciencia
34(8): 583-588.
Budak,
N.H., Aykin, E., Seydim,
A.C., Greene, A.K. & Guzel- Seydim,
Z.B. 2014.
Functional properties of vinegar. Journal
of Food Science 79(5): R757-R764.
Cardwell,
T.J., Cattrall, R.W., Cross, G.J., O’connell,
G.R., Petty, J.D. & Scollary, G.R.
1991. Determination of titratable acidity of wines and total acidity of
vinegars by discontinuous flow analysis using photometric end-point
detection. Analyst 116(10): 1051-1054.
Caro,
I., Pérez, L., Cantero, D. & Webb,
C. 1992. Modelling of ethanol evaporative losses during batch alcohol fermentation.
The Chemical Engineering Journal 48(3): B15-B22.
Cheeke,
P.R. & Dierenfeld, E.S. 2010. Comparative Animal Nutrition and Metabolism. Oxfordshire: CABI.
Chidi,
B., Rossouw, D., Buica,
A. & Bauer, F. 2015. Determining the impact of industrial
wine yeast strains on organic acid production under white and
red wine-like fermentation conditions. South African
Journal of Enology and Viticulture 36(3): 316-327.
Chism,
G.W. & Haard, N.F. 1996. Characteristics of edible plant tissues. In
Food Chemistry, edited by Fennema,
O.R. New York: Marcel Dekker Inc. pp. 943-1011.
Coelho,
E., Genisheva, Z., Oliveira, J.M., Teixeira,
J.A. & Domingues, L. 2017. Vinegar production
from fruit concentrates: Effect on volatile composition and antioxidant
activity. Journal of Food Science and Technology 54(12):
4112-4122.
Delfini,
C. & Formica, J.V. 2001. Wine Microbiology: Science and Technology.
Philadelphia: Taylor & Francis.
Dubourdieu,
D., Masneuf, I. & Bely, M. 2005. Influence of physiological
state of inoculum on volatile acidity production by Saccharomyces
cerevisiae during high sugar fermentation. International
Journal of Vine and Wine Sciences 39(4): 191-198.
Emde, F. 2014. Ullmann’s
Encyclopedia of Industrial Chemistry: Vinegar. Weinheim:
Wiley VCH Verlag GmbH & Co.
Erasmus,
D.J., Cliff, M. & Van Vuuren, H.J.
2004. Impact of yeast strain on the production of acetic acid, glycerol,
and the sensory attributes of icewine.
American Journal of Enology and Viticulture 55(4): 371-378.
Fatima,
B. & Mishra, A. 2015. Optimization of process
parameter for the production of vinegar from banana peel and coconut
water. International Journal of Science, Engineering
and Technology 3(3): 817-823.
Ferreira,
J., Toit, M. & Toit,
W.D. 2006.
The effects of copper and high sugar concentrations
on growth, fermentation efficiency and volatile acidity production
of different commercial wine yeast strains. Australian
Journal of Grape and Wine Research 12(1): 50-56.
Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J.
2017a. Varieties, production, composition and health benefits
of vinegars: A review. Food Chemistry 221: 1621-1630.
Ho, C.W., Lazim, A.M., Fazry, S., Umi Kalsum, H.Z. & Lim, S.J.
2017b. Effects of fermentation time and pH on
soursop (Annona muricata) vinegar
production towards its chemical compositions. Sains
Malaysiana 46(9): 1505-1512.
Ho, Y.M., Wan Amir
Nizam, W.A. & Wan Rosli,
W.I. 2016. Antioxidative activities
and polyphenolic content of different varieties of malaysian
young corn ear and cornsilk. Sains
Malaysiana 45(2): 195-200.
Huh, W.K., Lee,
B.H., Kim, S.T., Kim, Y.R., Rhie, G.E.,
Baek, Y.W., Hwang, C.S., Lee, J.S. & Kang, S.O. 1998.
D-Erythroascorbic acid is an important
antioxidant molecule in Saccharomyces cerevisiae. Molecular
Microbiology 30(4): 895-903.
Kongkiattikajor, J. 2015. Enhancement of bioactive compounds of roselle
vinegar by co-culture fermentation. Isan Journal of
Pharmaceutical Sciences 10(4): 61-74.
Kumar,
G.V., Ajay Kumar, K., Raghu, P.G. & Manjappa,
S. 2013.
Determination of vitamin C in some fruits and
vegetables in Davanagere city (Karanataka)-India.
International Journal of Pharmacy & Life Sciences 4(3):
2489-2491.
Lee,
P.R., Ong, Y.L., Yu, B., Curran, P. & Liu, S.Q. 2010. Profile of volatile compounds during papaya juice fermentation by
a mixed culture of Saccharomyces cerevisiae and Williopsis
saturnus. Food Microbiology
27(7): 853-861.
Lešková,
E., Kubíková, J., Kováčiková,
E., Košická, M., Porubská,
J. & Holčíková, K. 2006. Vitamin losses:
Retention during heat treatment and continual changes expressed
by mathematical models. Journal of Food Composition and Analysis
19(4): 252-276.
Lim,
S.J., Wan Aida, W.M., Maskat, M.Y.,
Mamot, S., Ropien, J. & Mohd,
D.M. 2014.
Isolation and antioxidant capacity of fucoidan
from selected Malaysian seaweeds. Food Hydrocolloids 42:
280-288.
Lingham,
T., Besong, S., Ozbay,
G. & Lee, J. 2012. Antimicrobial activity of vinegar on bacterial species
isolated from retail and local channel catfish (Ictalurus
punctatus). Journal of Food Processing
and Technology S11-001 2: 25-28.
Malaysia
Food Regulations.
1985. Regulation 334. Putrajaya: Ministry of Health, Malaysia.
Mohamad, N.E.,
Yeap, S.K., Lim, K.L., Mohd Yusof,
H., Beh, B.K., Tan, S.W., Ho, W.Y.,
Sharifuddin, S.A., Jamaluddin, A., Long, K., Nik Abd Rahman, N.M.A. & Alitheen,
N.B. 2015. Antioxidant effects of pineapple vinegar in reversing
of paracetamol-induced liver damage in mice. Chinese Medicine
10: 3.
Mohd
Fadzelly, A.B., Fifilyana,
A.K. & Perisamy, E. 2015. Comparison of
phytochemicals and antioxidant properties of different fruit parts
of selected artocarpus species from Sabah, Malaysia. Sains Malaysiana 44(3):
355-363.
Morales,
L.M., González, G.A., Casas, J.A. & Troncoso,
A.M. 2001.
Multivariate analysis of commercial and laboratory produced sherry
wine vinegars: Influence of acetification
and aging. European Food Research and Technology 212(6):
676-682.
Nogueira,
A., Guyot, S., Marnet,
N., Lequéré, J.M., Drilleau, J.F. &
Wosiacki, G. 2008. Effect of alcoholic fermentation in the content of phenolic compounds
in cider processing. Brazilian Archives of Biology and
Technology 51(5): 1025-1032.
Pérez-Gregorio,
M.R., Regueiro, J., Alonso-González,
E., Pastrana-Castro, L.M. & Simal-Gándara,
J. 2011.
Influence of alcoholic fermentation process on antioxidant activity
and phenolic levels from mulberries (Morus
nigra L.). LWT - Food Science and Technology 44(8):
1793-1801.
Randhir, R., Kwon, Y.I.
& Shetty, K. 2008.
Effect of thermal processing on phenolics,
antioxidant activity and health-relevant functionality of select
grain sprouts and seedlings. Innovative Food Science
& Emerging Technologies 9(3): 355-364.
Sanarico, D., Motta, S.,
Bertolini, L. & Antonelli,
A. 2003.
HPLC determination of organic acids in traditional balsamic vinegar
of Reggio emilia. Journal of Liquid
Chromatography & Related Technologies 26(13): 2177-2187.
Su, M.S. &
Chien, P.J. 2007. Antioxidant activity, anthocyanins
and phenolics of rabbiteye
blueberry (Vaccinium ashei)
fluid products as affected by fermentation. Food
Chemistry 104(1): 182-187.
Usman, M., Davidson,
J. & Books, M.C. 2015. Health Benefits of Papaya - for
Cooking and Healing. Mendon: Mendon Cottage Books.
Van Den Broeck, I., Ludikhuyze, L., Weemaes, C., Van Loey, A. &
Hendrickx, M. 1998. Kinetics for isobaric-isothermal
degradation of l-ascorbic acid. Journal of Agricultural
and Food Chemistry 46(5): 2001-2006.
Vithlani, V.A. & Patel,
H.V. 2010.
Production of functional vinegar from Indian
jujube (Zizyphus mauritiana)
and its antioxidant properties. Journal of Food Technology
8(3): 143-149.
Wood, T.M. &
Bhat, K.M. 1988.
Methods for measuring cellulase
activities. Methods in Enzymology 160: 87-112.
Zuhair, R.A., Aminah, A., Sahilah, A.M. &
Eqbal, D. 2013.
Antioxidant activity and physicochemical properties changes of
papaya (Carica papaya L. cv. Hongkong)
during different ripening stage. International Food Research
Journal 20(4): 1653-1659.
*Corresponding author;
email: joe@ukm.edu.my