Sains Malaysiana 47(9)(2018): 2055–2061
http://dx.doi.org/10.17576/jsm-2018-4709-13
Pengoptimuman Parameter
untuk Penurunan
Diimida Getah Asli
Cecair dalam
Sistem Hidrazin Hidrat/Hidrogen Peroksida Menggunakan Kaedah Rangsangan Permukaan (RSM)
(Parameter Optimisation for Diimide Reduction
of Liquid Natural Rubber in Hydrazine Hydrate/Hydrogen Peroxide
System using Response Surface Methodology (RSM))
MUHAMMAD
JEFRI
MOHD
YUSOF1,
NUR
AIDASYAKIRAH
MOHD
TAHIR1,
FAZIRA
FIRDAUS1
& SITI FAIRUS M. YUSOFF1,2*
1Pusat Pengajian Sains Kimia dan Teknologi Makanan,
Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Polymer Research Centre
(PORCE), Fakulti Sains
dan Teknologi,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 27 March 2018/Accepted: 17 May 2018
ABSTRAK
Getah asli cecair
(LNR)
dihasilkan daripada
proses penyahpolimeran getah asli yang menghasilkan rantaian polimer lebih pendek dan
berat molekular
kurang daripada 105. Namun, LNR
masih mempamerkan tahap degradasi dan ketahanan termal
yang rendah seperti
getah asli, disebabkan
oleh kehadiran
ikatan karbon ganda
dua pada
rantaian polimer. Dalam kajian ini, penurunan
diimida menggunakan
pengoksidaan hidrazin hidrat dengan hidrogen
peroksida dijalankan
untuk menghidrogenkan unit tidak tepu LNR.
LNR terhidrogen
(HLNR)
dicirikan menggunakan
spektrometer infra-merah (FTIR)
dan spektrometer
resonans magnetik nuklear (NMR). Pengoptimuman parameter
tindak balas
dilakukan dengan memanipulasi parameter masa dan
suhu tindak balas
berdasarkan kaedah
rangsangan permukaan (RSM)
dengan 5-aras-2-faktor reka
bentuk komposit
putaran tengah (CCRD).
Satu
model kuadratik yang signifikan
telah dihasilkan untuk menghubungkan dua parameter tersebut dengan nilai R2 adalah 0.9986, menunjukkan bahawa model yang terhasil adalah sangat sepadan
dengan data uji
kaji. Keputusan kajian menunjukkan
bahawa peratus
penghidrogenan boleh ditingkatkan sehingga 91.2%.
Seterusnya, berdasarkan
RSM,
parameter yang optimum bagi penurunan
diimida LNR ini
didapati pada
suhu 55.9oC selama
6.7 jam, menghasilkan 80.2% HLNR.
Kajian
ini telah menunjukkan
reka bentuk
uji kaji secara
statistik yang novel bagi
menghidrogenkan LNR. Pelbagai variasi
peratus penghidrogenan
produk HLNR dalam
kajian ini menyumbang
kepada lebih
banyak aplikasi produk yang memerlukan peratusan ketepuan unit yang tertentu.
Kata kunci: Getah asli
cecair; kaedah
rangsangan permukaan (RSM);
penghidrogenan; pengoptimuman;
reka bentuk
komposit putaran tengah (CCRD)
ABSTRACT
Liquid natural rubber
(LNR)
derives from depolimerisation of natural
rubber resulting in shorter polymeric chains and lower molecular
weight of less than 105. However, LNR still exhibits weak degradation
and thermal resistance of natural rubber due to the presence
of carbon-carbon double bonds along its backbone. In this research,
diimide reduction via oxidation of hydrazine hydrate with
hydrogen peroxide was used to hydrogenate LNR to
saturate its chemical structure. Hydrogenated LNR (HLNR)
was characterized using Fourier-transform infrared (FTIR)
and nuclear magnetic resonance (NMR) spectroscopies. The optimization
of reaction conditions was accomplished by manipulating time
and temperature parameters based on response surface methodology
(RSM)
of 5-level-2-factor central composite rotatable design (CCRD).
A significant quadratic model was generated to correlate those
two parameters with R2 value of 0.9986, indicating that
the model was remarkably fit with the experimental data. The
results showed that hydrogenation degree of the product (HLNR)
could be extended to 91.2%. Subsequently, the optimum conditions
for diimide reduction of LNR were found to be at 55.9°C
for 6.7 h, yielding 80.2% HLNR. This study has demonstrated the
novel statistical design of experiment to hydrogenate LNR as
a new starting material. The variation of hydrogenation degrees
of the products has opened up more potentials for industrial
and application purposes as they are composed of different percentages
of saturated and saturated units.
Keywords: Central composite
rotatable design (CCRD); hydrogenation;
liquid natural rubber; optimization; response surface methodology
(RSM)
REFERENCES
Alshaibani, A.M.,
Yaakob, Z., Alsobaai,
A.M. & Sahri, M. 2014. Optimization
of pd-b / γ -al 2 o 3 catalyst preparation for palm oil
hydrogenation by response surface methodology (RSM) Journal
of Chemical Reactor Engineering 31(1): 69-78.
Azhar,
N.H.A., Jamaluddin, N., Md Rasid,
H., Yusof, M., Jefri,
M. & Yusoff, S.F.M. 2015. Studies on hydrogenation of liquid natural rubber using diimide. International Journal of Polymer Science
2015: 243038.
Cepeda,
E.A. & Calvo, B. 2008. Sunflower
oil hydrogenation: Study using response surface methodology.
Journal of Food Engineering 89(4): 370-374.
Chen,
D., Shao, H., Yao, W. & Huang, B. 2013. Fourier transform infrared spectral analysis of polyisoprene
of a different microstructure. International Journal of Polymer
Science 2013: 937284.
Chou,
K.W., Norli, I. & Anees,
A. 2010. Evaluation of the effect of temperature,
NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response
surface methodology (RSM). Bioresource
Technology 101(22): 8616-8622.
Fainleib,
A., Pires, R.V., Lucas, E.F. &
Soares, B.G. 2013. Degradation of non-vulcanized natural rubber - renewable resource
for fine chemicals used in polymer synthesis. Polimeros
23: 441-450.
Han,
Y., Su, L., Mao, L., Zhang, L. & Yue, D. 2014. Self-cross-linking hydrogenated nitrile-butadiene rubber latex/polyvinyl
chloride emulsion composite film and its properties.
Polymer- Plastics Technology and Engineering 53(3): 306-311.
Ibrahim,
S., Rubber, M. & Ibrahim, S. 2016. Chemical
depolymerisation of natural rubber in biphasic medium.
Advanced Materials Research 1024: 193-196.
Jamaluddin,
N., Mohd Yusof,
M.J., Abdullah, I. & M. Yusoff,
S.F. 2016. Synthesis,
characterization, and properties of hydrogenated liquid natural
rubber. Rubber Chemistry and Technology 89(2): 227-239.
Ji,
M., Yue, D., Wu, X., Zhao, S., Sun, S. & Zhang, L. 2017. Structure
and performance of hydrogenated natural rubber prepared by the
latex method. Plastics, Rubber and Composites 46(6):
245-250.
Jumbri,
K., Rozy, M.F.A. & Ashari,
S.E. 2015. Optimisation and characterisation of lipase- catalysed
synthesis of a kojic monooleate
ester in a solvent-free system by response surface methodology.
PloS One 10(12): 1-13.
Kargarzadeh, H.,
Ahmad, I. & Abdullah, I. 2014. Liquid rubbers
as toughening agents. Micro and Nanostructures Epoxy/
Rubber Blends 1: 31-52.
Lee,
W.C., Yusof, S., Hamid, N.S.A. &
Baharin, B.S. 2006. Optimizing conditions
for enzymatic clarification of banana juice using response surface
methodology (RSM). Journal of Food Engineering 73(1):
55-63.
Leimgruber, S.
& Trimmel, G. 2015. Olefin metathesis meets
rubber chemistry and technology. Monatshefte
für Chemie-
Chemical Monthly 146(7): 1081-1097.
Mendes, L.C., De Menezes,
H.C., Aparecida, M. & Da Silva,
A.P. 2001. Optimization of the roasting of
robusta coffee (C. canephora
conillon) using acceptability
tests and RSM. Food Quality and Preference 12(2):
153-162.
Onoji, S.E.,
Iyuke, S.E. & Igbafe,
A.I. 2016.
Hevea brasiliensis
(Rubber seed) oil: Extraction, characterization, and kinetics
of thermo-oxidative degradation using classical chemical methods.
Energy & Fuels 30(12): 10555-10567.
Piya-areetham, P.,
Rempel, G.L. & Prasassarakich,
P. 2014. Hydrogenated
nanosized polyisoprene
as a thermal and ozone stabilizer for natural rubber blends.
Polymer Degradation and Stability 102: 112-121.
Radabutra, S.,
Saengsuwan, S., Jitchati,
R. & Kalapat, M. 2017. Preparation
and characterization of modified telechelic
natural rubber-based pressure-sensitive adhesive. Journal
of Adhesion Science and Technology 31(24): 2682-2696.
Rempel,
G.L. & Wang, H. 2017. Nitrile rubber latex blends: Preparation, characterization
and applications. In Rubber Nano Blends,
edited by Markovic, G. & Visakh,
P.M. Springer Series on Polymer and Composite Materials.
Springer, Cham. pp. 67-88.
Sakorn, S.,
Rempel, G.L., Prasassarakich, P. &
Hinchiranan, N. 2016. Poly (styrene)‐and
poly (styrene‐co‐methyl methacrylate)‐graft‐hydrogenated natural
rubber latex: Aspect on synthesis, properties, and compatibility.
Journal of Vinyl and Additive Technology 22(2): 100-109.
Salinas,
M.V., Zuleta, A., Ronayne,
P. & Puppo, M.C. 2016. Wheat bread enriched
with organic calcium salts and inulin. A bread
quality study. Journal of Food Science and Technology
53(1): 491-500.
Simma, K., Rempel, G.L. &
Prasassarakich, P. 2009. Improving
thermal and ozone stability of skim natural rubber by diimide
reduction. Polymer Degradation and Stability 94(11):
1914- 1923.
Tahir,
N.A.M., Azhar, N.H.A., Rasidi,
H.M. & Yusoff, S.F.M. 2017. Penghidrogenan getah
asli cecair
dan getah asli
cecair terepoksida
menggunakan diimida. Journal
of Polymer Science and Technology 2(1): 1-10.
Taksapattanakul, K., Tulyapitak, T., Phinyocheep, P.,
Ruamcharoen, P., Ruamcharoen, J.,
Lagarde, F. & Daniel, P. 2017.
The effect of percent hydrogenation and vulcanization system
on ozone stability of hydrogenated natural rubber vulcanizates
using Raman spectroscopy. Polymer Degradation and Stability
141: 58-68.
Thitithammawong, A., Rungvichaniwat, A. & Srangkum,
S. 2015. Properties of dual cured polyurethane film coatings
based on natural rubber. Macromolecular Symposia 354:
354-360.
Thongnuanchan, B.,
Ninjan, R., Kaesaman,
A. & Nakason, C. 2015. A
novel method to crosslink natural rubber latex adhesive at ambient
temperature. Polymer Bulletin 72(1): 135-155.
Trovatti, E.,
Cunha, A.G., Carvalho, A.J.F. &
Gandini, A. 2017. Furan-modified natural rubber:
A substrate for its reversible crosslinking and for clicking
it onto nanocellulose. International Journal of Biological Macromolecules
95: 762-768.
Wu,
W., Zhai, Y., Zhang, Y. & Ren,
W. 2014. Mechanical and microwave
absorbing properties of in situ prepared hydrogenated
acrylonitrile-butadiene rubber/rare earth acrylate composites.
Composites Part B: Engineering 56: 497-503.
Yuan, D., Ding, J., Mou, W., Wang, Y. & Chen, Y. 2017. Bio-based
polylactide/epoxidized
natural rubber thermoplastic vulcanizates
with a co-continuous phase structure. Polymer Testing
64: 200-206.
Yusof, M.J.M.,
Abdullah, I. & Yusoff, S.F.M.
2017. Sintesis dan
pencirian getah
asli cecair terhidrogen
untuk adunan
polimer. Sains
Malaysiana 46(10): 1817-1823.
Zirnstein, B., Tabaka, W., Frasca, D., Schulze,
D. & Schartel, B. 2018. Graphene/hydrogenated
acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing,
mechanical reinforcement, multifunctional filler. Polymer
Testing 66: 268-279.
*Corresponding
author; email: sitifairus@ukm.edu.my