Sains Malaysiana 47(9)(2018): 2091–2098

http://dx.doi.org/10.17576/jsm-2018-4709-17

 

Kesan Garam Litium Nitrat terhadap Sifat Elektrokimia Karboksimetil Kitosan

(The Effect of Lithium Nitrate towards Electrochemical Properties of Carboxymethyl Chitosan)

 

N.N. MOBARAK*, F.N. JANTAN, N.A. DZULKURNAIN, A. AHMAD & M.P. ABDULLAH

 

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 31 March 2018/Accepted: 17 May 2018

 

ABSTRAK

Karboksimetil kitosan menunjukkan potensi untuk digunakan sebagai polimer induk bagi aplikasi elektrolit polimer pepejal. Kesan garam litium nitrat terhadap sifat elektrokimia elektrolit polimer pepejal berasaskan karboksimetil kitosan telah dijalankan. Elektrolit polimer pepejal berasaskan karboksimetil kitosan disediakan melalui teknik pengacuan larutan dengan nisbah garam litium nitrat (LiNO3) yang berbeza. Pencirian filem telah dijalankan dengan menggunakan spektroskopi inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR) dan Spektroskopi Impedans Elektrokimia (EIS) bagi penentuan interaksi kimia dan sifat elektrokimia polimer elektrolit tersebut. Spektrum ATR-FTIR menunjukkan ion litium cenderung untuk berinteraksi dengan kumpulan karbonil dan kumpulan ester dalam struktur karboksimetil kitosan. Kekonduksian ion tertinggi yang dicapai adalah 8.44 × 10-4 S cm-1 dengan kepekatan garam 30 bt. % LiNO3 pada suhu bilik dan 5.25 × 10-3 S cm−1 pada suhu 70°C. Filem karboksimetil kitosan-30% LiNO3 mencapai kestabilan secara elektrokimia sehingga 2.94 V. Keputusan kajian yang diperoleh menunjukkan elektrolit polimer pepejal berasaskan karboksimetil kitosan memberi satu tarikan baru bagi aplikasi bateri ion litium.

 

Kata kunci: Elektrolit polimer pepejal; FTIR; karboksimetil kitosan; sifat elektrokimia

 

ABSTRACT

Carboxymethyl chitosan has showed its potential to be used as host polymer for solid polymer electrolyte application. The effect of lithium nitrate towards electrochemical properties of solid polymer electrolyte based carboxymethyl chitosan has been investigated. Solid bio-polymer electrolyte based carboxymethyl chitosan was prepared by solution-casting technique with different ratios of lithium nitrate (LiNO3) salt. The films were characterized by attenuated total reflected Fourier transform infrared (ATR-FTIR) Spectroscopy and Electrochemical Impedance Spectroscopy to determine the chemical interaction and electrochemical properties of the polymer electrolytes. Based on ATR-FTIR spectra, the lithium ions tend to interact with carbonyl group and ether group in carboxymethyl chitosan structure. The highest conductivity achieved was 8.44 × 10-4 S cm-1 with a concentration of 30 wt. % of LiNO3 salt at room temperature and 5.25 × 10-3 S cm−1 at 70°C. The films were electrochemically stable up to 2.94 V. The results suggest that this solid polymer electrolyte based on carboxymethyl chitosan demonstrate potential to be applied in lithium ion batteries.

 

Keywords: Carboxymethyl chitosan; electrochemical properties; FTIR; solid polymer electrolyte

REFERENCES

 

Abdullah, O.G., Hanna, R.R., Salman, Y.A.K. & Aziz, S. 2018. Characterization of lithium ion-conducting blend biopolymer electrolyte based on CH–MC doped with LiBF4. Journal of Inorganic and Organometallic Polymers and Materials 28(4): 1432-1438.

Ahmad, N.H. & Isa, M.I.N. 2016. Ionic conductivity and electrical properties of carboxymethyl cellulose - NH4Cl solid polymer electrolytes. Journal of Engineering Science and Technology 11(6): 839-847.

Croisier, F. & Jérôme, C. 2013. Chitosan-based biomaterials for tissue engineering. European Polymer Journal 49(4): 780-792.

Denaro, A.R. 1987. Elektrokimia Permulaan. Kuala Lumpur: Dewan Bahasa dan Pustaka.

Hanibah, H., Ahmad, A. & Hassan, N.H. 2014. A new approach in determining limiting molar conductivity value for liquid electrolyte. Electrochimica Acta 147: 758-764.

Hargreaves, S. 2013. The battery that grounded Boeing. http:// money.cnn.com/2013/01/17/technology/boeing-battery.

Hoek, C. 1995. Algae: An Introduction to Phycology. Cambridge: Cambridge University Press.

Hudson, S.M. & Smith, C. 1998. Polysaccharides: Chitin and chitosan: chemistry and technology of their use as structural materials, Dlm. Biopolymers from Renewable Resources, disunting oleh Kaplan, D. New York: Springer. pp. 96-119.

Khanmirzaei, M.H. & Ramesh, S. 2013. Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. International Journal of Electrochemical Science 8: 9977-9991.

Masykur, A., Santosa, S.J., Siswanta, D. & Jumina, J. 2014. Synthesis of Pb (Ii) Imprinted carboxymethyl chitosan and the application as sorbent for Pb (Ii) ion. Indonesian Journal of Chemistry 14(2): 152-159.

Mobarak, N.N., Ahmad, A., Abdullah, M., Ramli, N. & Rahman, M. 2013. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochimica Acta 92: 161-167.

Mobarak, N.N., Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A. 2015. Carboxymethyl carrageenan based biopolymer electrolytes. Electrochimica Acta 175: 224-231.

Mohamed, N.S., Subban, R.H.Y. & Arof, A.K. 1995. Polymer batteries fabricated from lithium complexed acetylated chitosan. Journal of Power Sources 56: 153-156.

Osman, Z., Mohd Ghazali, M.I., Othman, L. & Md Isa, K.B. 2012. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes. Physic 2: 1-4.

Pavia, D., Lampman, G., Kriz, G. & Vyvyan, J. 2008. Introduction to Spectroscopy. Cengage Learning.

Ravi, M., Bhavani, S., Kiran Kumar, K. & Narasimaha Rao, V.V.R. 2013. Investigations on electrical properties of PVP: KiO4 polymer electrolyte films. Solid State Sciences 19: 85-93.

Rudhziah, S., Ahmad, A. & Mohamed, N. 2016. The effect of lithium iodide to the properties of carboxymethyl κ-Carrageenan/carboxymethyl cellulose polymer electrolyte and dye-sensitized solar cell performance. Polymers 8(5): 163.

Sim, L.N., Majid, S.R. & Arof, A.K. 2012. FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vibrational Spectroscopy 58: 57-66.

Singh, R., Singh, P.K., Tomar, S.K. & Bhattacharya, B. 2016. Synthesis, characterization, and dye-sensitized solar cell fabrication using solid biopolymer electrolyte membranes. High Performance Polymers 28(1): 47-54.

Wu, C., Wu, F., Bai, Y., Feng, T., Pan, C., Ye, L. & Feng, G.Z. 2009. Preparation and characteristics of novel hyperbranched PEU-based gel polymer electrolytes. Journal of the Chilean Chemical Society 54(3): 299-301.

Xiong, S., Xie, K., Diao, Y. & Hong, X. 2012. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries. Electrochimica Acta 83: 78-86.

Zamri, S.F.M., Latif, F.A., Ali, A.M.M., Ibrahim, R., Kamaluddin, N. & Hadip, F. 2014. Ionic conductivity and dielectric properties of LiBF4 doped PMMA/ENR 50 filled acid modified SiO2 electrolytes. Procedia Technology 15: 849- 855.

Zhou, D., Wang, G., Li, W., Li, G., Tan, C., Rao, M. & Liao, Y. 2008. Preparation and performances of porous polyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries. Journal of Power Sources 184(2): 477-480.

 

 

*Corresponding author; email: nadhratunnaiim@ukm.edu.my

 

 

 

 

 

 

 

previous