Sains Malaysiana 47(9)(2018): 2091–2098
http://dx.doi.org/10.17576/jsm-2018-4709-17
Kesan Garam Litium Nitrat
terhadap Sifat
Elektrokimia Karboksimetil Kitosan
(The Effect of Lithium Nitrate towards Electrochemical Properties
of Carboxymethyl Chitosan)
N.N.
MOBARAK*,
F.N.
JANTAN,
N.A.
DZULKURNAIN,
A.
AHMAD
& M.P. ABDULLAH
School of Chemical Sciences
and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 31 March 2018/Accepted:
17 May 2018
ABSTRAK
Karboksimetil kitosan menunjukkan
potensi untuk
digunakan sebagai polimer induk bagi
aplikasi elektrolit
polimer pepejal. Kesan garam litium
nitrat terhadap sifat elektrokimia elektrolit polimer pepejal berasaskan karboksimetil kitosan telah dijalankan. Elektrolit polimer pepejal berasaskan karboksimetil kitosan disediakan melalui teknik pengacuan larutan dengan nisbah garam
litium nitrat
(LiNO3)
yang berbeza. Pencirian filem
telah dijalankan
dengan menggunakan spektroskopi inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR)
dan Spektroskopi
Impedans Elektrokimia (EIS)
bagi penentuan
interaksi kimia dan sifat elektrokimia
polimer elektrolit
tersebut. Spektrum ATR-FTIR menunjukkan ion litium cenderung untuk berinteraksi dengan kumpulan karbonil dan kumpulan
ester dalam struktur
karboksimetil kitosan. Kekonduksian ion tertinggi yang
dicapai adalah 8.44 × 10-4
S cm-1 dengan
kepekatan garam
30 bt. % LiNO3 pada suhu bilik
dan 5.25 × 10-3 S
cm−1 pada
suhu 70°C. Filem karboksimetil kitosan-30% LiNO3 mencapai kestabilan secara elektrokimia sehingga 2.94 V. Keputusan kajian yang diperoleh menunjukkan elektrolit polimer pepejal berasaskan karboksimetil kitosan memberi satu tarikan baru
bagi aplikasi
bateri ion litium.
Kata kunci: Elektrolit polimer pepejal; FTIR;
karboksimetil kitosan;
sifat elektrokimia
ABSTRACT
Carboxymethyl chitosan has showed its potential to be used as host polymer for
solid polymer electrolyte application. The effect of lithium
nitrate towards electrochemical properties of solid polymer
electrolyte based carboxymethyl chitosan has been investigated. Solid bio-polymer
electrolyte based carboxymethyl chitosan
was prepared by solution-casting technique with different ratios
of lithium nitrate (LiNO3) salt. The films were characterized
by attenuated total reflected Fourier transform infrared (ATR-FTIR)
Spectroscopy and Electrochemical Impedance Spectroscopy to determine
the chemical interaction and electrochemical properties of the
polymer electrolytes. Based on ATR-FTIR spectra, the lithium ions tend
to interact with carbonyl group and ether group in carboxymethyl
chitosan structure. The highest conductivity achieved was 8.44
× 10-4
S cm-1 with a concentration of 30 wt.
% of LiNO3 salt at room temperature and
5.25 × 10-3 S cm−1 at
70°C. The films were electrochemically stable up to 2.94 V.
The results suggest that this solid polymer electrolyte based
on carboxymethyl chitosan demonstrate
potential to be applied in lithium ion batteries.
Keywords: Carboxymethyl chitosan; electrochemical
properties; FTIR; solid polymer
electrolyte
REFERENCES
Abdullah, O.G., Hanna,
R.R., Salman, Y.A.K. & Aziz, S. 2018. Characterization of
lithium ion-conducting blend biopolymer electrolyte based on
CH–MC doped with LiBF4. Journal of Inorganic and Organometallic
Polymers and Materials 28(4): 1432-1438.
Ahmad,
N.H. & Isa, M.I.N. 2016. Ionic conductivity and electrical
properties of carboxymethyl cellulose
- NH4Cl solid polymer electrolytes. Journal of Engineering
Science and Technology 11(6): 839-847.
Croisier, F.
& Jérôme, C. 2013. Chitosan-based
biomaterials for tissue engineering. European Polymer
Journal 49(4): 780-792.
Denaro, A.R. 1987. Elektrokimia Permulaan.
Kuala Lumpur: Dewan Bahasa dan Pustaka.
Hanibah, H.,
Ahmad, A. & Hassan, N.H. 2014. A new approach
in determining limiting molar conductivity value for liquid
electrolyte. Electrochimica
Acta 147: 758-764.
Hargreaves, S. 2013.
The battery that grounded Boeing. http:// money.cnn.com/2013/01/17/technology/boeing-battery.
Hoek, C. 1995. Algae:
An Introduction to Phycology. Cambridge: Cambridge University
Press.
Hudson, S.M.
& Smith, C. 1998. Polysaccharides: Chitin and chitosan:
chemistry and technology of their use as structural materials,
Dlm. Biopolymers from Renewable Resources, disunting oleh Kaplan, D. New York:
Springer. pp. 96-119.
Khanmirzaei, M.H. & Ramesh,
S. 2013. Ionic transport and FTIR properties of lithium iodide
doped biodegradable rice starch based polymer electrolytes.
International Journal of Electrochemical Science 8: 9977-9991.
Masykur, A.,
Santosa, S.J., Siswanta,
D. & Jumina, J. 2014. Synthesis
of Pb (Ii) Imprinted carboxymethyl
chitosan and the application as sorbent for Pb
(Ii) ion. Indonesian Journal of Chemistry 14(2):
152-159.
Mobarak, N.N.,
Ahmad, A., Abdullah, M., Ramli, N.
& Rahman, M. 2013.
Conductivity enhancement via chemical modification of chitosan
based green polymer electrolyte. Electrochimica
Acta 92: 161-167.
Mobarak, N.N.,
Jumaah, F.N., Ghani, M.A., Abdullah,
M.P. & Ahmad, A. 2015.
Carboxymethyl carrageenan based biopolymer
electrolytes. Electrochimica
Acta 175: 224-231.
Mohamed,
N.S., Subban, R.H.Y. & Arof,
A.K. 1995.
Polymer batteries fabricated from lithium complexed acetylated
chitosan. Journal of Power Sources 56: 153-156.
Osman,
Z., Mohd Ghazali,
M.I., Othman, L. & Md Isa, K.B.
2012. AC ionic conductivity
and DC polarization method of lithium ion transport in PMMA-LiBF4
gel polymer electrolytes. Physic 2: 1-4.
Pavia,
D., Lampman, G., Kriz,
G. & Vyvyan, J. 2008.
Introduction to Spectroscopy.
Cengage Learning.
Ravi,
M., Bhavani, S., Kiran Kumar, K. &
Narasimaha Rao, V.V.R. 2013. Investigations on electrical properties
of PVP: KiO4 polymer electrolyte films. Solid State Sciences
19: 85-93.
Rudhziah, S.,
Ahmad, A. & Mohamed, N. 2016. The effect of
lithium iodide to the properties of carboxymethyl
κ-Carrageenan/carboxymethyl cellulose
polymer electrolyte and dye-sensitized solar cell performance.
Polymers 8(5): 163.
Sim,
L.N., Majid, S.R. & Arof, A.K.
2012. FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with
LiCF3SO3 salt. Vibrational Spectroscopy 58: 57-66.
Singh,
R., Singh, P.K., Tomar, S.K. &
Bhattacharya, B. 2016.
Synthesis, characterization, and dye-sensitized
solar cell fabrication using solid biopolymer electrolyte membranes.
High Performance Polymers 28(1): 47-54.
Wu, C., Wu, F., Bai,
Y., Feng, T., Pan, C., Ye, L. & Feng, G.Z. 2009. Preparation
and characteristics of novel hyperbranched
PEU-based gel polymer electrolytes. Journal of the
Chilean Chemical Society 54(3): 299-301.
Xiong, S.,
Xie, K., Diao,
Y. & Hong, X. 2012.
Properties of surface film on lithium anode with LiNO3 as lithium
salt in electrolyte solution for lithium-sulfur batteries. Electrochimica
Acta 83: 78-86.
Zamri, S.F.M.,
Latif, F.A., Ali, A.M.M., Ibrahim, R., Kamaluddin,
N. & Hadip, F. 2014. Ionic conductivity and
dielectric properties of LiBF4 doped PMMA/ENR 50 filled acid
modified SiO2 electrolytes. Procedia Technology
15: 849- 855.
Zhou, D., Wang, G., Li,
W., Li, G., Tan, C., Rao, M. & Liao, Y. 2008. Preparation
and performances of porous polyacrylonitrile-methyl
methacrylate membrane for lithium-ion batteries. Journal
of Power Sources 184(2): 477-480.
*Corresponding
author; email: nadhratunnaiim@ukm.edu.my