Sains Malaysiana 47(9)(2018): 2105–2111
http://dx.doi.org/10.17576/jsm-2018-4709-19
Construction of the
pEGFP-N1-p53/MAR Vector and Its Effect on HEP3B Cell Morphology
(Pembinaan
Vektor pEGFP-N1-p53/MAR dan
Kesannya ke
atas Morfologi Sel HEP3B)
PENG SHAN LI1,
XUE
QIN
LEI1*,
TING
SHENG
XU1,
PAN
LIN
WANG1,
ZHEN
SONG1,
ZHEN
HONG
LI1
& XUE MEI HAN2
1College of Animal Science and Technology, Henan University
of Science and Technology, Luoyang, 471023, China
2Cancer Research, Third Affiliated Hospital of Henan University of
Science and Technology, Luoyang, 471003, China
Received: 28 January 2018/Accepted:
9 May 2018
ABSTRACT
Cancer always presents
a big problem that endangers human health. In recent years,
the use of gene therapy in cancer research has significantly
increased. This study aimed to construct a non-viral, wild-type,
recombinant eukaryotic expression vector, pEGFP-N1-p53/MAR and verify its mechanism of
action in cancer cells in vitro. This investigation
provides a novel strategy for p53 gene therapy via regulation
of the matrix attachment region (MAR), potentially laying a foundation
for the establishment of an anticancer protein bioreactor. The
p53 gene was cloned from human peripheral blood and the MAR gene
was amplified from chicken liver tissue. The recombinant eukaryotic
expression vector pEGFP-N1-p53/MAR was constructed using an E. coli self-replication system. LipofectamineTM 2000
was used as the transfection agent to deliver the plasmid into
the human hepatic carcinoma (HEP3B) cell line. We divided the
groups as follows: negative control cells without plasmid transfection,
vehicle control cells transfected with the PEGFP-N1 vector and experimental cells transfected with
the pEGFP-N1-p53/MAR vector. Cells in each well of the
vehicle control and experimental groups were transfected with
1.6 μg of plasmid and 3 μL
of liposome. The cellular morphology of each group was analysed
using green fluorescence microscopy at 12, 24, 36 and 48 h.
Then, statistical analysis of the apoptosis
rates among the three groups was performed using SPSS. The ultrastructures
of the cells were observed via transmission electron microscopy
after transfection for 24 h. Morphological analysis showed that
the cells of the experimental group were shrunken and reduced
in size and their intercellular connections had disappeared.
Additionally, the apoptosis rate in the experimental group was
significantly higher than that in the control groups and the
cellular microstructure showed that heterochromatin and apoptotic
bodies were found in the experimental group. In conclusion,
compared with the control groups, the pEGFP-N1-p53/MAR plasmid can effectively promote Hep3B
cell apoptosis in vitro.
Keywords: Cell microstructure; cell morphology;
gene therapy; p53 gene; matrix attachment region (MAR);
non-viral vector
ABSTRAK
Kanser selalu menimbulkan
masalah besar
yang mengancam kesihatan manusia. Kebelakangan ini, penggunaan terapi gen dalam penyelidikan kanser telah meningkat dengan ketara. Kajian ini bertujuan untuk
membina sebuah
rekombinan vektor ekspresi eukariot bukan virus, jenis liar, pEGFP-N1-p53/MAR dan mengesahkan
mekanisme tindakan
dalam sel kanser
secara in
vitro. Kajian
ini memberikan satu strategi baru
untuk terapi
gen p53 melalui peraturan matriks pelekatan rantau (MAR), berpotensi
meletakkan asas
yang kukuh untuk penubuhan
bioreaktor protein antikanser.
Gen p53 diklon daripada
darah periferi manusia dan gen MAR telah diamplifikasi daripada tisu hati
ayam. Vektor ekspresi rekombinan
eukariot pEGFP-N1-p53/MAR telah dibangunkan menggunakan sistem replikasi sendiri E. coli. LipofectamineTM 2000 telah digunakan sebagai ejen transfeksi untuk menghantar plasmid ke dalam titisan
sel manusia
karsinoma hepar (HEP3B).
Kami membahagikan kumpulan
seperti berikut: Sel kawalan negatif
tanpa transfeksi
plasmid, sel kawalan penghantaran
transfeksi dengan
vektor PEGFP-N1 dan
sel uji
kaji transfeksi
dengan vektor pEGFP-N1-p53/MAR. Sel dalam
telaga setiap
kawalan sarana dan kumpulan uji
kaji telah
ditransfeksi dengan 1.6 μg plasmid dan 3 μL liposom. Morfologi sel setiap kumpulan
dianalisis menggunakan
mikroskop hijau pendarfluor pada 12, 24, 36 dan 48 jam. Kemudian, analisis statistik pada kadar
apoptosis antara ketiga-tiga
kumpulan telah
dijalankan menggunakan perisian SPSS. Ultrastruktur sel
telah diperhatikan
melalui penghantaran elektron mikroskop selepas transfeksi selama 24 jam. Analisis morfologi menunjukkan
bahawa sel
kumpulan uji kaji
telah dikecut
dan dikurangkan saiznya serta sambungan
intersel telah
hilang. Di samping itu, kadar
apoptosis dalam kumpulan
uji kaji adalah
jauh lebih
tinggi daripada kumpulan kawalan dan mikrostruktur sel menunjukkan bahawa jasad heterokromatin
dan apoptotik
telah ditemui dalam
kumpulan uji
kaji. Kesimpulannya, berbanding dengan
kumpulan kawalan,
plasmid pEGFP-N1-p53/MAR berkesan menggalakkan sel apoptosis Hep3B
secara in vitro.
Kata kunci: Gen p53; matriks
pelekatan rantau
(MAR); mikrostruktur
sel; morfologi sel; terapi gen; vektor bukan virus
REFERENCES
Buyukpinarbasili, N., Gucin, Z., Ersoy,
Y.E., Ilbak, A., Kadioqlu,
H. & Muslumanoqlu M. 2016. p53 expression and relationship with MDM2
amplification in breast carcinomas. Ann. Diag. Pathol.
21: 29-34.
Bode, J., Kohwi, Y., Dickinson, L., Joh,
T., Klehr, D., Mielke,
C. & Kohwi-Shiqematsu, T. 1992.
Biological significance of unwinding capability
of nuclear matrix-associating DNAs. Science 255(5041):
195-197.
Choi, E.W., Seen, D.S., Song, Y.B., Son, H.S., Jung, N.C., Huh, W.K.,
Hahn, J.S., Kim, K., Jeong, J.Y. &
Lee, T.G. 2012. AdHTS: A high-throughput
system for generating recombinant adenoviruses. J. Biotechnol. 162(2-3): 246-252.
Cheng, A.C., Tsai, M.L., Liu, C.M., Lee, M.F., Naqabhushanam,
K., Ho, C.T. & Pan, M.H. 2010. Garcinol inhibits cell growth in hepatocellular carcinoma
Hep3B cells through induction of ROS-dependent apoptosis. Food
Funct. 1(3): 301-307.
Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R.
1994. Dependence of enhancer-mediated transcription
of the immunoglobulin mu gene on nuclear matrix attachment regions.
Science 265(5176): 1221-1225.
Hacker, G. 2000. The
morphology of apoptosis. Cell Tissue Res. 301(1):
5-17.
Hafner, A.M., Corthésy,
B. & Merkle, H.P. 2013. Particulate
formulations for the delivery of poly(I:C)
as vaccine adjuvant. Adv. Drug. Deliv. Rev. 65(10): 1386-1399.
Kaplan, M.H., Zong, R.T., Herrscher, R.F., Scheuermann, R.H.
& Tucker, P.W. 2001. Transcriptional
activation by a matrix associating region-binding protein.
J. Biol. I. Chem. 276(24): 21325-21330.
Kerr, J.F., Wyllie, A.H. & Currie, A.R. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications
in tissue kinetics. Br. J. Cancer 26(4): 239-257.
Ko, L.J. & Prives, C. 1996. p53: Puzzle
and paradigm. Genes and Development 10(9): 1054-1572.
Levine, A.J. 1997. p53, the cellular gatekeeper for growth and division. Cell
88(3): 323-331.
Liu, X.Q., Du, J.Z., Zhang, C.P.,
Zhao, F., Yang, X.Z. & Wang, J. 2010. Brush-shaped polycation with poly(ethylenimine)- b-poly(ethylene
glycol) side chains as highly efficient gene delivery vector.
Int. J. Pharm. 392(1-2): 118-126.
Ljungrnan, M. 2000. Dial 9-1-1 for p53: Mechanisms
of p53 activation by cellular stress. Neoplasia 2(3):
208-225.
Mandal, S., Rosso, N., Tiribelli, C., Scoles, G. &
Krol, S. 2011. Targeted multicomponent polysomes for high efficiency, simultaneous anti-sense and
gene delivery. Soft Matter.
7(19): 9424-9434.
Majno, G. & Joris, I. 1995. Apoptosis, oncosis and necrosis. An overview
of cell death. Am. J. Pathol.
146(1): 3-15.
Naim, H.Y. 2013. Applications and challenges of multivalent
recombinant vaccines. Hum. Vaccin. Immunother. 9(3): 457-461.
Ndoye, A., Merlin, J.L., Leroux, A., Dolivet,
G., Erbacher, P., Behr, J.P., Berg,
K. & Guillemin, F. 2004. Enhanced gene transfer and cell death following
p53 gene transfer using photochemical internatisation
of glucosylated PEI-DNA complexes.
J. Gene Med. 6(8): 884-894.
Soussi, T. 2007. p53
alterations in human cancer: More questions than answer. Oncogene
26(15): 2145-2156.
Seth, P. 2005. Vector-mediated cancer
gene therapy: An overview. Cancer Biol.
Ther. 4(5): 512-517.
Saafi, E.L., Konarkowska, B., Zhang,
S., Kistler, J. & Cooper, G.J.
2001. Ultrastructural evidence that apoptosis
is the mechanism by which human amylin evokes death in RINm5F
pancreatic islet beta-cells. Cell Biol. Int. 25(4): 339-350.
Soussi, T. & May, P. 1996. Structural
aspects of the p53 protein in relation to gene evolution: a
second look. J. Mol. Biol. 260(5): 623-637.
Soussi, T., Caron, de Fromental C. &
May, P. 1990. Structural aspects of the p53 protein in relation
to gene evolution. Oncogene 5(7): 945-952.
Wang, K., Huang, Q., Qiu, F. & Sui, M. 2015. Non-viral delivery systems for the application
in p53 cancer gene therapy. Curr. Med.
Chem. 22(35): 4118-4136.
Xu, C., Sui, M., Tang, J. & Shen,
Y. 2011. What can we learn from virus in designing nonviral
gene vectors. Chin. J. Polym.
Sci. 29(3): 274-287.
Xu, L., Frederik, P., Pirollo, K.F., Tang, W.H., Rait,
A., Xiang, L.M., Huang, W., Cruz, I., Yin, Y. & Chang, E.H.
2002. Self-assembly of a virus-mimicking nanostructure system for efficient
tumor-targeted gene delivery. Hum. Gene Ther.
13(3): 469-481.
*Corresponding author; email: xueqinlei@l63.com