Sains Malaysiana 47(9)(2018): 2205–2211
http://dx.doi.org/10.17576/jsm-2018-4709-31
Rational Quadratic Bézier Spirals
(Pilinan Kuadratik
Nisbah Bézier)
AZHAR
AHMAD1*
& R.U. GOBITHAASAN2
1Faculty
of Science and Mathematics, Universiti
Pendidikan Sultan Idris, 35900 Tanjung
Malim, Perak Darul
Ridzuan, Malaysia
2School
of Informatics & Applied Mathematics, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu
Darul Iman, Malaysia
Received:
10 January 2018/Accepted: 19 May 2018
ABSTRACT
A quadratic Bézier representation withholds a curve segment with free
from loops, cusps and inflection points. Furthermore, this
rational form provides extra freedom to generate visually
pleasing curves due to the existence of weights. In this paper,
we propose sufficient conditions for rational quadratic Bézier
curves to possess monotonic increasing/decreasing curvatures
by means of monotone curvature tests which are based on the
derivative of curvature functions. We have derived a simple
interval of the middle weight that assures the construction
of a family of rational quadratic Bézier
curves to be planar spirals, which is characterized by the
turning angle, end curvatures and the chords of control polygon.
The proposed formulation can be used by CAD
systems for aesthetic product design, highway/railway
design and robot trajectory design avoiding unwanted curvature
oscillations.
Keywords: Bézier curves; curvature; monotonicity; rational quadratics;
spirals
ABSTRAK
Suatu perwakilan kuadratik
Bézier akan
memastikan satu
segmen lengkung yang bebas daripada gelung, punding serta titik lengkungbalas.
Selain
itu, bentuk nisbahnya
pula memberikan lebih
kebebasan bagi menjana lengkungan yang menyenangkan dengan sebab kewujudan pemberat. Dalam makalah ini,
kami mencadangkan semua
syarat yang cukup untuk suatu lengkung
nisbah kuadratik
Bézier untuk memiliki
kelengkungan yang monoton
secara meningkat/menurun melalui ujian kelengkungan monoton, yang berasaskan pembezaan fungsi kelengkungan. Kami menafsirkan satu selang mudah merujuk
kepada pemberat
tengah yang menjamin pembinaan satu keluarga lengkung nisbah kuadratik Bézier sebagai suatu pilinan satah.
Ia dicirikan
oleh sudut
putaran, kelengkungan hujung dan sisi-sisi
poligon kawalan.
Rumus yang dicadangkan ini boleh diguna pakai
pada sistem
CAD untuk reka bentuk
produk estetik,
reka bentuk lebuhraya/landasan keretapi dan reka bentuk
trajektori robot yang dapat
menghindar ayunan
yang tidak diingini pada kelengkungan.
Kata kunci: Kelengkungan;
kemonotanan; kuadratik
nisbah; lengkung Bezier; pilinan
REFERENCES
Ahn,
Y.J. & Kim, H.O. 1998. Curvatures of the quadratic
rational Bézier curves. Computers
& Mathematics with Applications 36(9): 71-83.
Farin,
G. 2014. Curves and Surfaces for Computer-Aided Geometric
Design: A Practical Guide. 5th ed. London: Academic Press.
Farin,
G. 1989. Curvature continuity and offsets for piecewise conics.
ACM Transactions on Graphics (TOG) 8(2): 89-99.
Farin, G.,
Rein, G., Sapidis, N. & Worsey,
A.J. 1987. Fairing cubic B-spline curves.
Computer Aided Geometric Design 4(1-2): 91-103.
Frey,
W.H. & Field, D.A. 2000. Designing Bézier conic segments with monotone curvature. Computer
Aided Geometric Design 17(6): 457-483.
Higashi,
M., Kaneko, K. & Hosaka, M.
1988. Generation of high-quality curve and surface with smoothly varying
curvature. http://dx.doi.org/10.2312/egtp.19881007.
pp. 79-92.
Hu,
Q. 2014. G1 approximation of conic sections by quartic Bézier
curves. Computers & Mathematics with Applications 68(12):
1882-1891.
Kulfan,
B. & Bussoletti, J. 2006. ‘Fundamental’ parameteric geometry representations
for aircraft component shapes. In
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference. p. 6948.
Lee,
E.T. 1987. The rational Bézier
representation for conics. In Geometric Modeling:
Algorithms and New Ttrends. SIAM: Academic Press. pp. 3-19.
Li,
Z., Ma, L., Meek, D., Tan, W., Mao, Z. & Zhao, M. 2006. Curvature monotony condition for rational quadratic B-spline curves.
In International Conference on Computational
Science and Its Applications. Springer-
Berlin Heidelberg. pp. 1118-1126.
Lyche,
T. & Morken, K. 2008. Spline Methods Draft. Department of Informatics, Center of Mathematics
for Applications, University of Oslo, Oslo.
Pavlidis, T.
1983. Curve fitting with conic splines. ACM Transactions
on Graphics (TOG) 2(1): 1-31.
Rusdi,
N.A. & Yahya, Z.R. 2015. Pembinaan semula fon arab
menggunakan lengkung
bézier kuartik. Sains Malaysiana 44(8):
1209-1216.
Sapidis,
N.S. & Frey, W.H. 1992. Controlling the
curvature of a quadratic Bézier
curve. Computer Aided Geometric Design 9(2):
85-91.
Sederberg,
T.W. 2012. Computer aided geometric design. Computer Aided
Geometric Design Course Notes. January 10.
Suenaga,
K. & Sakai, M. 1999. On curvatures of rational
quadratic Bézier segments.
Rep. Fac. Sci. 32: 15-20.
Yoshida,
N. & Saito, T. 2007. Quasi-aesthetic curves in rational cubic
Bézier forms. Computer-Aided
Design and Applications 4(1-4): 477-486.
*Corresponding author; email: azhar.ahmad@fsmt.upsi.edu.my