Sains Malaysiana 48(10)(2019): 2135–2141

http://dx.doi.org/10.17576/jsm-2019-4810-08 

 

Characterization of the Antimicrobial Substances Produced by Nibribacter radioresistens

(Pencirian Bahan Antimikrob yang Dihasilkan oleh Nibribacter radioresistens)

 

SAM WOONG KIM1, YEON JO HA1, SANG WAN GAL1, KYU PIL LEE2, KYU HO BANG1, MYUNG-SUK KANG3, JOO-HONG YEO3, HEE-SUN YANG3, SEUNG-HO JEON4 & WOO YOUNG BANG3*

 

1Gene Analysis Center, Gyeongnam National University of Science & Technology, Jinju 52725, Republic of Korea

 

2Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea

 

3National Institute of Biological Resources (NIBR), Environmental Research Complex, Incheon 22689, Republic of Korea

 

4Sunchon National University, 255, Jungang-ro, Suncheon-si, 57922, Republic of Korea

 

Received: 14 December 2018/Accepted: 16 September 2019

 

ABSTRACT

This study characterized the antimicrobial substances produced by the radiation-resistant bacterium Nibribacter radioresistens. The antimicrobial substances showed activity against Salmonella Gallinarum, pathogenic Escherichia coli, Bacillus cereus, Streptococcus iniae, and Saccharomyces cerevisiae. The substances showed higher activity against Gram-positive bacteria than against Gram-negative bacteria and yeast. N. radioresistens showed the best growth rate in LB liquid medium at 37ºC; however, production of the antimicrobial substances was not associated with growth. Since the activity of the antimicrobial substances was affected by proteinase K and EDTA, the substances were presumed to be antimicrobial peptides (AMPs). The antimicrobial substances produced by N. radioresistens were unstable at higher temperatures and in acidic and basic pH ranges, and most of the activity was attributed to either low (<3 kDa) or high molecular weight (>30 kDa) molecules. When S. Gallinarum was treated with the antimicrobial substances, the cell destruction was acted on the cell envelope. Therefore, we concluded that N. radioresistens produces broad-spectrum and very unstable antimicrobial substances that mostly consist of low- and high-molecular weight peptides.

Keywords: AMPs; antimicrobial activity; growth curve; Nibribacter radioresistens; protease; radiation-resistant bacteria

 

ABSTRAK

Kajian ini dicirikan bahan antimikrob yang dihasilkan oleh bakteria Nibribacter radioresistens. Bahan antimikrob menunjukkan aktiviti menentang Salmonella Gallinarum, patogen Escherichia coli, Bacillus cereus, Streptococcus iniae dan Saccharomyces cerevisiae. Bahan yang menunjukkan aktiviti yang lebih tinggi terhadap bakteria gram-positif berbanding dengan bakteria gram-negatif dan yis. N. radioresistens menunjukkan kadar pertumbuhan terbaik dalam cecair medium lb pada 37ºC; walau bagaimanapun, pengeluaran bahan antimikrob tidak dikaitkan dengan pertumbuhan. Oleh kerana aktiviti bahan antimikrob terjejas oleh proteinase k dan edta, bahan tersebut dianggap sebagai antimikrob peptida (AMPs). Bahan antimikrob yang dihasilkan oleh N. radioresistens tidak stabil pada suhu yang lebih tinggi dan berada dalam julat berasid dan ph asas, dan sebahagian besar aktiviti itu disebabkan sama ada rendah (<3 kda) atau berat molekul tinggi (>30 kda). Apabila S. Gallinarum dirawat dengan bahan antimikrob, pemusnahan sel telah berlaku pada sampul sel. Oleh itu, kami menyimpulkan bahawa N. radioresistens menghasilkan bahan antimikrob yang luas dan sangat tidak stabil yang kebanyakannya terdiri daripada peptida berat molekul rendah dan tinggi.

 

Kata kunci: Aktiviti antimikrob; AMPs; bakteria rintangan-sinaran; keluk pertumbuhan; Nibribacter radioresisten; sprotease

REFERENCES

Azevedo, A.C., Bento, C.B., Ruiz, J.C., Queiroz, M.V. & Mantovani, H.C. 2015. Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Appl. Environ. Microbiol. 81: 7290-7304.

Bulet, P. & Stocklin, R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11.

Cabrera, M.A. & Blamey, J.M. 2018. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res. 51: 37.

Chen, G.Q. & Jiang, X.R. 2018. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 50: 94100.

Demain, A.L. 1998. Induction of microbial secondary metabolism. Int. Microbiol. 1: 259-264.

Dimopoulos, G., Richman, A., Müller, H.M. & Kafatos, F.C. 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl. Acad. Sci. USA. 94: 11508-11513.

Dopson, M., Ni, G. & Sleutels, T.H. 2016. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol. Rev. 40: 164-181.

Easton, D.M., Nijnik, A., Mayer, M.L. & Hancock, R.E. 2009. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 27: 582-590.

Garsa, A.K., Kumariya, R., Sood, S.K., Kumar, A. & Kapila, S. 2014. Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob. Proteins 6: 47-58.

Goh, H.F. & Philip, K. 2015. Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE 10: e0140434.

Ha, Y.J., Kim, S.W., Lee, C.W., Bae, C.H., Yeo, J.H., Kim, I.S., Gal, S.W., Hur, J., Jung, H.K., Kim, M.J. & Bang, W.Y. 2017. Anti-Salmonella activity modulation of mastoparan V1-a wasp venom toxin-using protease inhibitors, and its efficient production via an Escherichia coli secretion system. Toxins. 9: pii: E321.

Kajimura, Y. & Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT- 8: Isolation, structure elucidation and biological activity. J Antibiot. 50: 220-228.

Kang, J.Y., Chun, J. & Jahng, K.Y. 2013. Nibribacter koreensis gen. nov., sp. nov., isolated from estuarine water. Int. J. Syst. Evol. Microbiol. 63: 4663-4668.

Kaur, R. & Tiwari, S.K. 2018. Membrane-acting bacteriocin purified from a soil isolate Pediococcus pentosaceus LB44 shows broad host-range. Biochem. Biophys. Res. Commun. 498: 810-816.

Lin, P., Yan, Z.F., Li, C.T., Kook, M. & Yi, T.H. 2018. Nibribacter flagellatus sp. nov., isolated from rhizosphere of Hibiscus syriacus and emended description of the genus Nibribacter. Antonie Van Leeuwenhoek. 111: 1777-1784.

Login, F.H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., Rochat, D. & Heddi, A. 2011. Antimicrobial peptides keep insect endosymbionts under control. Science 334: 362-365.

Mousa, W.K. & Raizada, M.N. 2015. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Front Plant Sci. 16: 231.

NIBR. 2016. Acquisition and Characterization of Extremophiles (Ⅱ). Microorganism Resources Division of Biological Resources Research Department.

Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M. & Fava, F. 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99: 7907-7913.

Reddy, K.V., Yedery, R.D. & Aranha, C. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24: 536-547.

Sarmiento, F., Peralta, R. & Blamey, J.M. 2015. Cold and hot extremozymes: Industrial relevance and current trends. Front Bioeng. Biotechnol. 3: 148.

Sathiyaraj, G., Kim, M.K., Kim, J.Y., Kim, S.J., Jang, J.H., Maeng, S.H., Kang, M.S. & Srinivasan, S. 2018. Complete genome sequence of Nibribacter radioresistens DG15C, a radiation resistant bacterium. Mol. Cell Toxicol. 14: 323-328.

Schwarzer, D., Finking, R. & Marahiel, M.A. 2003. Nonribosomal peptides: From genes to products. Nat. Prod. Rep. 20: 275- 287.

Tajbakhsh, M., Karimi, A., Fallah, F. & Akhavan, M.M. 2017. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cell. Mol. Biol. 63: 20-32.

Walsh, C.J., Guinane, C.M., Hill, C., Ross, R.P., O’Toole, P.W. & Cotter, P.D. 2015. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol. 15: 183.

Wang, G. 2013. Database-guided discovery of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals 6: 728-758.

Wiegand, I., Hilpert, K. & Hancock, R.E. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3: 163-175.

 

*Corresponding author; email: wybang@korea.kr

 

 

 

previous