Sains Malaysiana 48(10)(2019): 2135–2141
http://dx.doi.org/10.17576/jsm-2019-4810-08
Characterization of the Antimicrobial
Substances Produced by Nibribacter radioresistens
(Pencirian Bahan Antimikrob yang
Dihasilkan oleh Nibribacter radioresistens)
SAM WOONG KIM1, YEON JO HA1, SANG WAN GAL1, KYU PIL LEE2, KYU HO BANG1, MYUNG-SUK KANG3, JOO-HONG YEO3, HEE-SUN YANG3, SEUNG-HO JEON4 & WOO YOUNG BANG3*
1Gene Analysis
Center, Gyeongnam National University of Science & Technology, Jinju 52725,
Republic of Korea
2Laboratory of
Physiology, College of Veterinary Medicine, Chungnam National University,
Daejeon 34134, Republic of Korea
3National Institute
of Biological Resources (NIBR), Environmental Research Complex, Incheon 22689,
Republic of Korea
4Sunchon National
University, 255, Jungang-ro, Suncheon-si, 57922, Republic of Korea
Received:
14 December 2018/Accepted: 16 September 2019
ABSTRACT
This
study characterized the antimicrobial substances produced by the
radiation-resistant bacterium Nibribacter radioresistens.
The antimicrobial substances showed activity against Salmonella Gallinarum,
pathogenic Escherichia coli, Bacillus cereus, Streptococcus iniae, and Saccharomyces
cerevisiae. The substances showed higher activity against Gram-positive
bacteria than against Gram-negative bacteria and yeast. N. radioresistens showed
the best growth rate in LB liquid medium at 37ºC;
however, production of the antimicrobial substances was not associated with
growth. Since the activity of the antimicrobial substances was affected by
proteinase K and EDTA, the substances were presumed to
be antimicrobial peptides (AMPs). The antimicrobial substances
produced by N. radioresistens were unstable at higher temperatures and
in acidic and basic pH ranges, and most of the activity was attributed to
either low (<3 kDa) or high molecular weight (>30 kDa) molecules. When S. Gallinarum was treated
with the antimicrobial substances, the cell destruction was acted on the cell
envelope. Therefore, we concluded that N. radioresistens produces
broad-spectrum and very unstable antimicrobial substances that mostly consist
of low- and high-molecular weight peptides.
Keywords: AMPs;
antimicrobial activity; growth curve; Nibribacter radioresistens;
protease; radiation-resistant bacteria
ABSTRAK
Kajian ini dicirikan bahan antimikrob
yang dihasilkan oleh bakteria Nibribacter radioresistens. Bahan antimikrob menunjukkan
aktiviti menentang Salmonella Gallinarum,
patogen Escherichia coli, Bacillus cereus, Streptococcus
iniae dan Saccharomyces cerevisiae. Bahan
yang menunjukkan aktiviti yang lebih tinggi terhadap bakteria gram-positif
berbanding dengan bakteria gram-negatif dan yis. N. radioresistens
menunjukkan kadar pertumbuhan terbaik dalam cecair medium lb
pada 37ºC; walau bagaimanapun, pengeluaran bahan antimikrob
tidak dikaitkan dengan pertumbuhan. Oleh kerana aktiviti bahan antimikrob
terjejas oleh proteinase k dan edta, bahan tersebut dianggap sebagai
antimikrob peptida (AMPs). Bahan antimikrob yang dihasilkan
oleh N. radioresistens tidak stabil pada suhu yang lebih
tinggi dan berada dalam julat berasid dan ph asas, dan sebahagian
besar aktiviti itu disebabkan sama ada rendah (<3 kda) atau berat
molekul tinggi (>30 kda). Apabila S. Gallinarum
dirawat dengan bahan antimikrob, pemusnahan sel telah berlaku pada
sampul sel. Oleh itu, kami menyimpulkan bahawa N. radioresistens
menghasilkan bahan antimikrob yang luas dan sangat tidak stabil
yang kebanyakannya terdiri daripada peptida berat molekul rendah
dan tinggi.
Kata kunci: Aktiviti antimikrob; AMPs; bakteria rintangan-sinaran; keluk
pertumbuhan; Nibribacter radioresisten; sprotease
REFERENCES
Azevedo, A.C., Bento, C.B., Ruiz, J.C., Queiroz, M.V. &
Mantovani, H.C. 2015. Distribution and genetic diversity of bacteriocin gene
clusters in rumen microbial genomes. Appl. Environ. Microbiol. 81:
7290-7304.
Bulet, P. & Stocklin, R. 2005. Insect antimicrobial peptides:
structures, properties and gene regulation. Protein Pept. Lett. 12:
3-11.
Cabrera, M.A. & Blamey, J.M. 2018. Biotechnological
applications of archaeal enzymes from extreme environments. Biol Res.
51: 37.
Chen, G.Q. & Jiang, X.R. 2018. Next generation industrial
biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol.
50: 94100.
Demain, A.L. 1998. Induction of
microbial secondary metabolism. Int. Microbiol. 1: 259-264.
Dimopoulos, G., Richman, A.,
Müller, H.M. & Kafatos, F.C. 1997. Molecular immune responses of the
mosquito Anopheles gambiae to bacteria and malaria parasites. Proc.
Natl. Acad. Sci. USA. 94: 11508-11513.
Dopson, M., Ni, G. & Sleutels,
T.H. 2016. Possibilities for extremophilic microorganisms in microbial
electrochemical systems. FEMS Microbiol. Rev. 40: 164-181.
Easton, D.M., Nijnik, A., Mayer,
M.L. & Hancock, R.E. 2009. Potential of immunomodulatory host defense
peptides as novel anti-infectives. Trends Biotechnol. 27: 582-590.
Garsa, A.K., Kumariya, R., Sood,
S.K., Kumar, A. & Kapila, S. 2014. Bacteriocin production and different
strategies for their recovery and purification. Probiotics Antimicrob.
Proteins 6: 47-58.
Goh, H.F. & Philip, K. 2015.
Purification and characterization of bacteriocin produced by Weissella
confusa A3 of dairy origin. PLoS ONE 10: e0140434.
Ha, Y.J., Kim, S.W., Lee, C.W.,
Bae, C.H., Yeo, J.H., Kim, I.S., Gal, S.W., Hur, J., Jung, H.K., Kim, M.J.
& Bang, W.Y. 2017. Anti-Salmonella activity modulation of mastoparan
V1-a wasp venom toxin-using protease inhibitors, and its efficient production
via an Escherichia coli secretion system. Toxins. 9: pii: E321.
Kajimura, Y. & Kaneda, M. 1997.
Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus
polymyxa KT- 8: Isolation, structure elucidation and biological activity. J
Antibiot. 50: 220-228.
Kang, J.Y., Chun, J. & Jahng,
K.Y. 2013. Nibribacter koreensis gen. nov., sp. nov., isolated from
estuarine water. Int. J. Syst. Evol. Microbiol. 63: 4663-4668.
Kaur, R. & Tiwari, S.K. 2018.
Membrane-acting bacteriocin purified from a soil isolate Pediococcus
pentosaceus LB44 shows broad host-range. Biochem. Biophys. Res. Commun.
498: 810-816.
Lin, P., Yan, Z.F., Li, C.T., Kook,
M. & Yi, T.H. 2018. Nibribacter flagellatus sp. nov., isolated from
rhizosphere of Hibiscus syriacus and emended description of the genus Nibribacter. Antonie Van Leeuwenhoek. 111: 1777-1784.
Login, F.H., Balmand, S., Vallier,
A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., Rochat, D. & Heddi,
A. 2011. Antimicrobial peptides keep insect endosymbionts under control. Science 334: 362-365.
Mousa, W.K. & Raizada, M.N.
2015. Biodiversity of genes encoding anti-microbial traits within plant
associated microbes. Front Plant Sci. 16: 231.
NIBR. 2016. Acquisition and
Characterization of Extremophiles (Ⅱ). Microorganism Resources
Division of Biological Resources Research Department.
Raddadi, N., Cherif, A.,
Daffonchio, D., Neifar, M. & Fava, F. 2015. Biotechnological applications
of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol.
99: 7907-7913.
Reddy, K.V., Yedery, R.D. &
Aranha, C. 2004. Antimicrobial peptides: Premises and promises. Int. J.
Antimicrob. Agents 24: 536-547.
Sarmiento, F., Peralta, R. &
Blamey, J.M. 2015. Cold and hot extremozymes: Industrial relevance and current
trends. Front Bioeng. Biotechnol. 3: 148.
Sathiyaraj, G., Kim, M.K., Kim,
J.Y., Kim, S.J., Jang, J.H., Maeng, S.H., Kang, M.S. & Srinivasan, S. 2018.
Complete genome sequence of Nibribacter radioresistens DG15C, a
radiation resistant bacterium. Mol. Cell Toxicol. 14: 323-328.
Schwarzer, D., Finking, R. &
Marahiel, M.A. 2003. Nonribosomal peptides: From genes to products. Nat.
Prod. Rep. 20: 275- 287.
Tajbakhsh, M., Karimi, A., Fallah,
F. & Akhavan, M.M. 2017. Overview of ribosomal and non-ribosomal antimicrobial
peptides produced by Gram positive bacteria. Cell. Mol. Biol. 63: 20-32.
Walsh, C.J., Guinane, C.M., Hill,
C., Ross, R.P., O’Toole, P.W. & Cotter, P.D. 2015. In silico identification
of bacteriocin gene clusters in the gastrointestinal tract, based on the Human
Microbiome Project’s reference genome database. BMC Microbiol. 15: 183.
Wang, G. 2013. Database-guided
discovery of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals 6:
728-758.
Wiegand, I., Hilpert, K. &
Hancock, R.E. 2008. Agar and broth dilution methods to determine the minimal
inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3:
163-175.
*Corresponding author;
email: wybang@korea.kr
|