Sains Malaysiana 48(10)(2019): 2185–2190
http://dx.doi.org/10.17576/jsm-2019-4810-14
Binocular and Monocular Resolution
Thresholds throughout Adulthood for Luminance-Modulated and Contrast-Modulated
Noise Letters
(Nilai Ambang Resolusi Monokular dan Binokular
sepanjang Usia Dewasa untuk Stimulus Hingar Termodulasi Luminans
dan Kontras)
PUI JUAN WOI,
SHARANJEET-KAUR
& MOHD IZZUDDIN HAIROL*
Optometry & Vision
Science Programme, Centre for Community Health, Faculty of Health
Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
Received: 7 October 2018/Accepted:
20 September 2019
ABSTRACT
Contrast-modulated
(CM)
noise stimuli are thought to be processed in higher, more binocular
visual areas compared to luminance-modulated (LM) stimuli, and the ability to
perceive them may be more susceptible to ageing. The aim of this
study was to determine monocular and binocular resolution thresholds
for LM and
CM
noise letters throughout adulthood. Resolution thresholds
for LM
and CM
noise letters were measured in 25 participants (age
21-70 years old) under monocular and binocular viewing. Stimuli
were H, O, T and V letters created by adding or multiplying a luminance
modulation function to a binary white noise carrier to create LM and CM noise
letters, respectively. Resolution thresholds, determined using a
2-down-1-up staircase procedure, were lower for LM, than for CM,
stimuli in both monocular and binocular viewing conditions (p<0.05).
Binocular summation ratio for CM noise letters was significantly
higher than that for LM noise letters (p<0.05) but
declined rapidly with increasing age. For the youngest age group
(20-29 years old), binocular resolution threshold was 39% better
(~1.5-line improvement on the clinical letter chart) than monocular
resolution threshold for CM noise letters, but only 15% better (~0.5-line improvement)
when measured with LM noise letters. Binocular performance
for CM noise letters declines at a faster
rate with increasing age compared to that for LM noise
letters. Visual function measurement with contrast-modulated stimuli
might be useful to detect subtle binocular vision anomalies that
may occur in early adulthood, which may be missed if measured with
luminance-based stimuli alone.
Keywords:
Ageing; binocular resolution; contrast-modulated; luminance-modulated;
monocular resolution
ABSTRAK
Rangsangan
hingar modulasi kontras (CM) dianggap diproses lebih tinggi, di
kawasan yang mempunyai lebih visual binokular berbanding rangsangan
modulasi luminans (LM) dan keupayaan untuk mengamatinya mungkin lebih terdedah
kepada penuaan. Matlamat kajian ini adalah untuk menentukan ambang
resolusi monokular dan binokular untuk huruf hingar LM dan
CM
sepanjang tempoh dewasa. Ambang resolusi untuk huruf
hingar LM
dan CM
telah diukur pada 25 peserta (umur 21-70 tahun) di
bawah penglihatan monokular dan binokular. Rangsangan adalah huruf
H, O, T dan V yang dicipta dengan menambah atau mendarabkan fungsi
modulasi luminans kepada pembawa bunyi putih untuk mewujudkan huruf
hingar LM dan
CM.
Ambang resolusi ditentukan menggunakan prosedur tangga 2-turun-1-naik,
lebih rendah untuk LM berbanding CM untuk rangsangan dalam kedua-dua
keadaan pandangan monokular dan binokular (p < 0.05). Nisbah
penjumlahan binokular untuk huruf hingar CM adalah jauh lebih tinggi daripada
untuk huruf hingar LM (p < 0.05) tetapi menurun
dengan cepat dengan peningkatan umur. Bagi kumpulan umur bongsu
(20-29 tahun), ambang resolusi binokular adalah 39% lebih baik (peningkatan
garisan ~1.5 dalam carta huruf klinikal) berbanding ambang resolusi
monokular untuk huruf hingar CM,
tetapi hanya 15% lebih baik (peningkatan garisan ~0.5) apabila diukur
dengan huruf hingar LM. Prestasi binokular untuk huruf hingar CM menurun
pada kadar yang lebih cepat dengan peningkatan umur berbanding dengan
huruf hingar LM. Pengukuran fungsi visual dengan rangsangan modulasi
kontras mungkin berguna untuk mengesan anomali visual binokular
halus yang mungkin berlaku pada peringkat awal dewasa, yang mungkin
terlepas pandang jika diukur dengan berasaskan luminans sahaja.
Kata
kunci: Modulasi kontras; modulasi luminans; penuaan; resolusi binokular;
resolusi monokular
REFERENCES
Baker, C.L. & Mareschal, I. 2001. Processing of second-order
stimuli in the visual cortex. Progress in Brain Research 134:
171-191.
Bassi, C.J., Solomon, K. & Young, D. 1993. Vision in aging and
dementia. Optometry and Vision Science 70(10): 809-813.
Bertone, A., Guy, J. & Faubert, J. 2011. Assessing spatial perception
in aging using an adapted Landolt-C technique. Neuroreport 22:
951-955.
Brewer, A.A. & Barton, B. 2012. Effects of healthy aging on human
primary visual cortex. Health 4(9A): 695-702.
Brewer, A. & Barton, B. 2014. Visual cortex in aging and Alzheimer’s
disease: Changes in visual field maps and population receptive fields.
Frontiers in Psychology. https:// www.frontiersin.org/article/10.3389/fpsyg.2014.00074.
Calvert, J., Manahilov, V., Simpson, W.A. & Parker, D.M. 2005.
Human cortical responses to contrast modulations of visual noise.
Vision Research 45(17): 2218-2230.
Chubb, C. & Sperling, G. 1988. Drift-balanced random stimuli:
A general basis for studying non-Fourier motion perception. J.
Opt. Soc. Am. 5(11): 1986-2007.
Chung, S.T.L., Li, R.W. & Levi, D.M. 2006. Identification of
contrast-defined letters benefits from perceptual learning in adults
with amblyopia. Vision Research 46(22): 3853-3861.
Costa, T.L., Nogueira,
R.M.T.B.L., Pereira, A.G.F. & Santos, N.A. 2013. Differential
effects of aging on spatial contrast sensitivity to linear and polar
sine-wave gratings. Brazilian Journal of Medical and Biological
Research 46(10): 855-860.
Crossland,
M.D., Morland, A.B., Feely, M.P., Von Dem Hagen, E. & Rubin,
G.S. 2008. The effect of age and fixation instability on retinotopic
mapping of primary visual cortex. Investigative Ophthalmology
and Visual Science 49: 3734-3739.
Dosher,
B.A. & Lu, Z.L. 2006. Level and mechanisms of perceptual learning:
Learning first-order luminance and second-order texture objects.
Vision Research 46(12): 1996- 2007.
Ellemberg,
D., Lavoie, K., Lewis, T.L., Maurer, D., Lepore, F. & Guillemot,
J.P. 2003. Longer VEP latencies and slower reaction times to the
onset of second-order motion than to the onset of first-order motion.
Vision Research. http://doi. org/10.1016/S0042-6989(03)00006-3.
Elliot,
D.B., Yang, K.C.H. & Whitaker, D. 1995. Visual acuity changes
throughout adulthood in normal, healthy eyes: Seeing beyond 6/6.
Optometry and Vision Science 72(3): 186-191.
Elliott,
D.B., Whitaker, D. & Bonette, L. 1990. Differences in the legibility
of letters at contrast threshold using the Pelli- Robson chart.
Ophthalmic and Physiological Optics 10(4): 323-326.
Frisen,
L. & Frisen, M. 1981. How good is normal visual acuity? A study
of letter acuity thresholds as a function of age. Albrecht Yon
Graefes Arch Klin. Ophthalmol. 215: 149-157.
Fun,
S.P., Mohidin, N., Kamal, A.A.M., Mohammed, Z. & Mohd- Ali,
B. 2016. Mild cognitive impairment does not affect pattern electroretinogram
in the elderly-a pilot study. Sains Malaysiana 45(9): 1399-1403.
Habak,
C. & Faubert, J. 2000. Larger effect of aging on the perception
of higher-order stimuli. Vision Research 40(2000): 943-950.
Hairol,
M.I., Formankiewicz, M. & Waugh, S.J. 2013. Foveal visual acuity
is worse and shows stronger contour interaction effects for contrast-modulated
than luminance-modulated Cs. Visual Neuroscience 30: 105-120.
Hairol,
M.I. & Waugh, S.J. 2010. Lateral facilitation revealed dichoptically
for luminance-modulated and contrast-modulated stimuli. Vision
Research 50(23): 2530-2542.
Larsson,
J., Landy, M.S. & Heeger, D.J. 2006. Orientation-selective adaptation
to first- and second-order patterns in human visual cortex. Journal
of Neurophysiology 95: 862- 881.
Mohammed,
Z., Mansor, S.Z. & Mohamed Akhir, S. 2016. Refractive error
and visual acuity of elderly Chinese in Selangor and Johor, Malaysia.
Sains Malaysiana 45(9): 1393-1398.
Ng,
T.P. 2016. Cognitive health of older persons in longitudinal ageing
cohort studies. Sains Malaysiana 45(9): 1351-1355.
Schofield,
A.J. & Georgeson, M.A. 1999. Sensitivity to modulations of luminance
and contrast in visual white noise: Separate mechanisms with similar
behaviour. Vision Research 39(16): 2697-2716.
Schofield,
A.J. & Georgeson, M.A. 2003. Sensitivity to contrast modulation:
The spatial frequency dependence of second-order vision. Vision
Research 43: 243-259.
Shen,
Y. 2013. Comparing adaptive procedures for estimating the psychometric
function for an auditory gap detection task. Atten Percept. Psychophys.
75(4): 771-780.
Smith,
A.T. & Ledgeway, T. 1997. Separate detection of moving luminance
and contrast modulations: Fact or Artifact ? Vision Research
37(1): 45-62.
Sukumar,
S. & Waugh, S.J. 2007. Separate first- and second-order processing
is supported by spatial summation estimates at the fovea and eccentrically.
Vision Research 47: 581-596.
Tanaka,
H. & Ohzawa, I. 2006. Neural basis for stereopsis from second-order
contrast cues. Journal of Neuroscience 26(16): 4370-4382.
Tang,
Y. & Zhou, Y. 2009. Age-related decline of contrast sensitivity
for second-order stimuli: Earlier onset, but slower progression,
than for first-order stimuli. Journal of Vision 9: 18.
Waugh,
S.J., Formankiewicz, M.A., Ahmad, N. & Hairol, M.I. 2010. Effects
of dioptric blur on foveal acuity and contour interaction for noisy
Cs. Journal of Vision 10(7): 1330.
Woi,
P.J., Kaur, S., Waugh, S.J. & Hairol, M.I. 2016. Visual acuity
measured with luminance-modulated and contrast-modulated letter
stimuli in young adults and adults above 50 years old. F1000Research
5: 1961.
Wong,
E.H., Levi, D.M. & McGraw, P.V. 2005. Spatial interactions reveal
inhibitory cortical networks in human amblyopia. Vision Research
45(21): 2810-2819.
*Corresponding author;
email: izzuddin.hairol@ukm.edu.my
|