Sains Malaysiana 48(10)(2019): 2265–2275

http://dx.doi.org/10.17576/jsm-2019-4810-23

 

Synthesis and Characterization of Star-Shaped (PCL-B-PEG) as Potential Electrospun Microfibres

(Sintesis dan Pencirian Berbentuk Bintang (PCL-B-PEG) Berpotensi sebagai Elektrospun Mikrogentian)

 

WAFIUDDIN ISMAIL1, RUSLI DAIK2, SHAFIDA ABD HAMID1 & WAN KHARTINI WAN ABDUL KHODIR*1

 

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia

 

2School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 16 May 2019/Accepted: 30 August 2019

 

ABSTRACT

Star-shaped polymers have vast potential in application due to their architecture. In this study, a 6-arm star-shaped of poly(ԑ-caprolactone)-b-poly(ethylene glycol), (6PCG) was synthesized via ring opening polymerization, (ROP) of ԑ-caprolactone and Steiglich esterification (coupling reaction) to attach the PEG arm to the star-shaped polymer with discrete core of dipentaerythritol. The polymer chemical structure was characterized by FT-IR. The molecular weight (Mn) determined from 1H NMR spectra showed that the star polymer has approximately the same molecular weight as the theoretical value. The polydispersity index indices (PDI) (>1.5) from GPC were narrow suggesting controlled polymerization reaction. Thermal stability of the star-shaped 6PCG were examined using thermogravimetric analysis, (TGA) and differential scanning calorimetry, (DSC) and showed slight increase compared to homopolymer star PCL due to the changes of end-group functionalities. Six-arm star-shaped PCL-b-PEG was dissolved in chloroform/methanol solvents and the resulting solution was used for electrospinning process. The morphology of nanofibres showed fine fibres without beads and thus a possible potential for several applications.

Keywords: Electrospinning; polycaprolactone; star polymer

 

ABSTRAK

Polimer berbentuk bintang memiliki potensi yang besar dalam pelbagai aplikasi kerana reka bentuknya. Dalam kajian ini, polimer berbentuk bintang dengan 6 cabang poli(ԑ-kaprolakton)-b-poli(etilena glikol), (6PCG) disintesis melalui pempolimeran pembukaan gelang, (ROP) ԑ-kaprolakton dan pengesteran Steiglich (tindak balas gabungan) untuk menggabungkan PEG kepada polimer berbentuk bintang dengan teras diskret dipenteritritol. Struktur kimia polimer dicirikan oleh FT-IR. Berat molekul (Mn) yang ditentukan daripada spektrum 1H NMR menunjukkan bahawa polimer bintang ini mempunyai berat molekul yang hampir sama sebagai nilai teori. Indeks kepolitaburan (PDI) (>1.5) yang diperoleh daripada analisis GPC mencadangkan tindak balas pempolimeran adalah tindak balas terkawal. Kestabilan terma 6PCG polimer berbentuk bintang ini telah dianalisis menggunakan analisis termogravimetrik, (TGA) dan kalorimetri imbasan perbezaan (DSC) dengan ia menunjukkan peningkatan kestabilan terma berbanding homopolimer bintang PCL disebabkan oleh perubahan kumpulan berfungsi terminal akhir. Polimer PCL-b-PEG berbentuk bintang dengan 6 cabang ini kemudiannya dilarutkan dalam pelarut kloroform/metanol dan larutan yang terhasil digunakan untuk proses elektroputaran. Morfologi nanogentian yang terhasil menunjukkan gentian halus tanpa manik menjadikan gentian ini berpotensi untuk aplikasi yang luas.

Kata kunci: Elektroputaran; polikaprolakton; polimer bintang

REFERENCES

An, J.H., Kim, H.S., Chung, D.J. & Lee, D.S. 2001. Thermal behavior of poly(ԑ-caprolactone)-poly(ethylene glycol)- poly(ԑ-caprolactone) tri-block copolymers. Journal of Materials Science 36: 715-722.

Aryal, S., Prabaharan, M., Pilla, S. & Gong, S. 2009. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. International Journal of Biological Macromolecules 44: 346-352.

Bao, W., Zhang, Y., Yin, G. & Wu, J. 2008. The structure and property of the electrospinning silk fibroin/gelatin blend nanofibers. E-Polym. 8: 1131-1139.

Bosworth, L.A. & Downes, S. 2011. Electrospinning for Tissue Regeneration. Oxford, UK: Woodhead Publishing in Materials.

Castillo, R.V. & Muller, A.J. 2009. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Progress in Polymer Science 34(6): 516-560.

Colwell, J.M. 2008. Synthesis of polycaprolactone polymers for bone tissue repair. PhD Thesis, Queensland University of Technology, Australia (Unpublished).

DerSchueren, L.V., DeSchoenmaker, B., Kalaoglu, O.I. & Clerck, K.D. 2011. An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal 47(6): 1256-1263.

Fong, H., Liu, W., Wang, C.S. & Vaia, R.A. 2002. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymers 43: 775-780.

Fong, H., Chun, I. & Reneker, D.H. 1999. Beaded nanofibers formed during electrospinning. Polymer 40(16): 4585-4592.

Frenot, A. & Chronakis, I.S. 2003. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science 8: 64-75.

Gaucher, G., Dufresne, M.H., Sant, V.P., Kang, N., Maysinger, D. & Leroux, J.C. 2005. Block copolymer micelles: Preparation, characterization and application in drug delivery. Journal of Controlled Release 109: 169-188.

Gazzarri, M., Bartoli, C., Mota, C., Puppi, D., Dinucci, D., Volpi, S. & Chiellini, F. 2013. Fibrous star poly(ԑ-caprolactone) melt-electrospun scaffolds for wound healing applications. J. Bioactive. Com. Polym. 28(5): 492-507.

Ghalia, M.A. & Dahman, Y. 2015. Radiation crosslinking polymerization of poly(vinyl alcohol) and poly(ethylene glycol) with controlled drug release. Journal of Polymer Research 22(218): 1-9.

Grafahrend, D., Heffels, K.H., Beer, M.V., Gasteier, P., Moller, M., Boehm, G., Dalton, P.D. & Groll, J. 2010. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nature Materials 10: 67-73.

Grayson, S.M., Poree, D.E., Giles, M.D., Lawson, L.B. & He, J. 2011. Synthesis of amphiphilic star block copolymers and their evaluation as transdermal carriers. Biomacromolecules 12: 898-906.

Gong, C.Y., Shi, S., Dong, P.W., Yang, B., Qi, X.R., Guo, G., Gu, Y.C., Zhao, X., Wei, Y.Q. & Qian, Z.Y. 2009. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: Part 1-synthesis, characterization, and acute toxicity evaluation. Journal of Pharmaceutical Sciences 98: 4684-4694.

Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 63: 2223-2253.

Hua, C. & Dong, C.M. 2007. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof. Journal of Biomedical Materials Research Part A 82(3): 689-700.

Izunobi, J.U. & Higginbotham, C.L. 2011. Polymer molecular weight analysis by 1H NMR spectroscopy. J. Chem. Educ. 88: 1098-1104.

Kakizawa, Y. & Kataoka, K. 2002. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews 54: 203-222.

Kaur, K. & Juglan, K.C. 2015. Studies of molecular interaction in the binary mixture of chloroform and methanol by using ultrasonic technique. Der Pharma Chemica 7(2): 160-167.

Khanna, K., Varshney, S. & Kakkar, A. 2010. Miktoarm star polymers: Advances in synthesis, self-assembly, and applications. Polym. Chem. 1: 1171-1185

Lee, H.C., Chang, T., Harville, S. & Ways, J.W. 1998. Characterization of linear and star polystyrene by temperature-gradient interaction chromatography with a light-scattering detector. Macromolecules 31(3): 690-694.

Lee, H.J., Lee, S.J., Uthaman, S., Thomas, R.G., Hyun, H., Jeong, Y.Y., Cho, C.S. & Park, I.K. 2015. Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibers. Int. J. Mol. Sci. 16: 13661-13677.

Lee, G., Song, J. & Yoon, K. 2010. Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning. Macromolecular Research 18: 571-576.

Letchford, K., Zastre, J., Liggins, R. & Burt, H. 2005. Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers. Colloid Surface B 35(2): 81-91.

Li, H., Qiao, T., Song, P., Guo, H., Song, X., Zhang, B. & Chen, X. 2015. Star-shaped PCL/PLLA blended fiber membrane via electrospinning. Journal of Biomaterials Science, Polymer Edition 26(7): 420-432.

Li, R., Li, X., Xie, L., Ding, D., Hu, Y., Qian, X., Yu, L., Ding, Y., Jiang, X. & Liu, B. 2009. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics 379: 158-166.

Li, X., Yang, C., Yang, S. & Li, G. 2012. Fiber-optical sensors: Basics and applications in multiphase reactors. Sensors 12: 2519-12544.

Lim, H.J., Lee, H., Kim, K.H., Huh, J., Ahn, C.H. & Kim, W.J. 2013. Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly(ethylene-glycol-b-poly(e-caprolactone) star polymers. Colloids Polymer Science 291: 1817-1827.

Lu, C., Guo, S.R., Zhang, Y. & Yin, M. 2006. Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polymer International 55(6): 694-700.

Maglio, G., Nese, G., Nuzzo, M. & Palumbo, R. 2004. Synthesis and characterization of star-shaped diblock poly(e-caprolactone)/poly(ethylene oxide) copolymers. Macromolecular Rapid Communications 25: 1139-1144.

Mckee, M.G., Wilkes, G.L., Colby, R.H. & Long, T.E. 2004. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37: 1760-1767.

Meier, A.R., Aerts, N.H., Staal, B.P., Rasa, M. & Schubert, U.S. 2005. PEO-b-PCL Block copolymers: Synthesis, detailed characterization, and selected micellar drug encapsulation behavior. Macromol. Rapid Commun. 26: 1918-1924.

Mota, C., Puppi, D., Dinucci, D., Gazzarri, M. & Chiellini, F. 2013a. Additive manufacturing of star poly(ε-caprolactone) wetspun scaffolds for bone tissue engineering applications. J. Bioactive Com. Polym. 28(4): 320-340.

Mota, C., Puppi, D., Gazzarri, M., Bartolo, P. & Chiellini, F. 2013b. Melt electrospinning writing of three-dimensional star poly(ԑ-caprolactone) scaffolds. Polym. Int. 62: 893-900.

Nabid, M.R., Razaei, S.J.T., Niknejad, H., ENtezami, A.A., Oskooie, H.A. & Heravi, M.M. 2011. Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic. A4B8 star-blocked copolymers based on PCL and PEG for hydrophobic dug deliver. Polymer 52: 2799-2809.

Nishiyama, N. & Kataoka, K. 2006. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology Therapeutics 112: 630-648.

Puppi, D., Piras, A.M., Chiellini, F., Chiellini, E., Martins, A., Leonor, I.B., Neves, N. & Reis, R. 2011. Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J. Tissue Eng. Regen. Med. 5: 253-263.

Puppi, D., Detta, N., Piras, A.M., Chiellini, F. & Clarke, D.A. 2010. Development of electrospun three-arm star poly(caprolactone) mashes for tissue engineering applications. Macromolecular Bioscience 10: 887-897.

Pierozynski, B. 2011. On the hydrogen evolution reaction at nickel-coated carbon fibre in 30 wt. % KOH solution. Int. J. Electrochem. Sci. 6: 63-77.

Qian, Y., Su, Y., Li, X., Wang, H. & He, C. 2010. Electrospinning of polymethyl methacrylate nanofibres in different solvents. Iranian Polymer Journal 19: 123-129.

Rosic, R., Kocbek, R., Pelipenko, J., Kristl, J. & Baumgartner, S. 2013. Nanofibers and their biomedical use. Acta Pharm. 63: 295-304.

Smallwood, I.M. 1996. Handbook of Organic Solvents Properties. Toronto, Canada: Wiley & Sons.

Soliman, G.M., Sharma, R., Choi, A.O., Varshney, S.K., Winnik, F.M., Kakkar, A. & Maysinger, D. 2010. Tailoring the efficiency of nimodipine drug delivery using nanocarriers base on A2B miktoarm star polymers. Biomaterials 31: 8382-8392.

Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S. & Ramkumar, S.S. 2005. Electrospinning of nanofibers. Journal of Applied Polymer Science 96: 557-569.

Sun, J., He, C., Zhuang, X., Jing, X. & Chen, X. 2011. The crystallization behavior of poly(ethylene glycol)-poly (ε-caprolactone) diblock copolymers with asymmetric block compositions. Journal of Polymer Research 18: 2161-2168.

Tao, X. 2001. Smart Fibers, Fabrics and Clothing. LLC. Cambridge CB1 6AH, England: Woodhead Publishing Ltd and CRC Press.

Teo, W.E. & Ramakrishna, S. 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17: 89-106.

Tsou, S.Y., Lin, H.S. & Wang, C. 2011. Studies on the electrospun nylon 6 nanofibers from polyelectrolyte solutions: Effects of solution concentration and temperature. Polymer v52(14): 3127-3136.

Uhrich, K.E., Djordjevic, J. & Michniak, B. 2003. Amphiphilic star-like macromolecules as novel carriers for topical delivery of nonsteroidal anti-inflammatory drugs. AAPs PharmSci. 5: 1-12.

Wan Abdul Khodir, W.K., Abdul Razak, A.H., Ng, M.H., Guarino, V. & Susanti, D. 2018. Encapsulation and characterization of gentamicin sulfate in the collagen added electrospun nanofibers for skin regeneration. J. Funct. Biomater. 9(2): 36.

Wang, F., Bronich, T.K., Kabannov, A.V., Rauh, D. & Roovers, J. 2005. Synthesis and evaluation of a star amphiphilic block copolymer from poly(e-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chemistry 16: 397-405.

Zeronian, S.H., Inglesby, M.K., Pan, N., Lin, D., Sun, G., Soni, B., Alger, K.W. & Gibbon, J.D. 1999. The fine structure of bicomponent polyester fibers. Journal of Applied Polymer Science 71: 1163-1173.

Zeiml, M., Leithner, D., Lackner, R. & Mang, H.A. 2006. How do polypropylene fibers improve the spalling behavior of in-situ concrete. Cement and Concrete Research 36: 929-942.

Zhou, S., Deng, X. & Yang, H. 2003. Biodegradable poly(e-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24: 3563-3570.

Zhu, J., Zhu, H., Njuguna, J. & Abhyankar, H. 2003. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6: 5171- 5198.

 

*Corresponding author; email: wkhartini@iium.edu.my

 

 

 

 

previous