Sains Malaysiana 48(10)(2019):
2265–2275
http://dx.doi.org/10.17576/jsm-2019-4810-23
Synthesis and Characterization of Star-Shaped
(PCL-B-PEG) as Potential Electrospun Microfibres
(Sintesis dan Pencirian Berbentuk
Bintang (PCL-B-PEG) Berpotensi sebagai Elektrospun Mikrogentian)
WAFIUDDIN ISMAIL1,
RUSLI
DAIK2,
SHAFIDA
ABD
HAMID1
& WAN KHARTINI WAN
ABDUL
KHODIR*1
1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia,
Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul
Makmur, Malaysia
2School of Chemical Science and Food
Technology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:
16 May 2019/Accepted: 30 August 2019
ABSTRACT
Star-shaped
polymers have vast potential in application due to their architecture.
In this study, a 6-arm star-shaped of poly(ԑ-caprolactone)-b-poly(ethylene glycol), (6PCG)
was synthesized via ring opening polymerization, (ROP)
of ԑ-caprolactone and Steiglich
esterification (coupling reaction) to attach the PEG arm
to the star-shaped polymer with discrete core of dipentaerythritol.
The polymer chemical structure was characterized by FT-IR.
The molecular weight (Mn) determined from
1H NMR
spectra showed that the star polymer has approximately
the same molecular weight as the theoretical value. The polydispersity
index indices (PDI)
(>1.5) from GPC were narrow suggesting controlled
polymerization reaction. Thermal stability of the star-shaped 6PCG
were examined using thermogravimetric
analysis, (TGA)
and differential scanning calorimetry, (DSC) and showed slight increase
compared to homopolymer star PCL due
to the changes of end-group functionalities. Six-arm star-shaped
PCL-b-PEG
was dissolved in chloroform/methanol solvents and
the resulting solution was used for electrospinning process. The
morphology of nanofibres showed fine fibres without beads and thus
a possible potential for several applications.
Keywords:
Electrospinning; polycaprolactone; star
polymer
ABSTRAK
Polimer berbentuk
bintang memiliki
potensi yang besar dalam pelbagai aplikasi kerana reka bentuknya. Dalam kajian ini,
polimer berbentuk
bintang dengan 6 cabang poli(ԑ-kaprolakton)-b-poli(etilena glikol),
(6PCG) disintesis melalui pempolimeran pembukaan gelang, (ROP)
ԑ-kaprolakton dan
pengesteran Steiglich (tindak balas gabungan)
untuk menggabungkan
PEG
kepada polimer berbentuk bintang dengan teras diskret
dipenteritritol. Struktur
kimia polimer dicirikan
oleh FT-IR. Berat
molekul (Mn)
yang ditentukan daripada
spektrum 1H NMR menunjukkan
bahawa polimer
bintang ini mempunyai
berat molekul
yang hampir sama sebagai
nilai teori.
Indeks kepolitaburan (PDI)
(>1.5) yang diperoleh daripada
analisis GPC mencadangkan
tindak balas
pempolimeran adalah tindak balas terkawal.
Kestabilan terma
6PCG
polimer berbentuk bintang ini telah
dianalisis menggunakan
analisis termogravimetrik, (TGA)
dan kalorimetri
imbasan perbezaan (DSC)
dengan ia menunjukkan peningkatan kestabilan terma berbanding homopolimer bintang PCL disebabkan
oleh perubahan
kumpulan berfungsi terminal akhir. Polimer PCL-b-PEG berbentuk bintang dengan 6 cabang ini kemudiannya dilarutkan dalam pelarut kloroform/metanol dan larutan
yang terhasil digunakan
untuk proses elektroputaran. Morfologi nanogentian yang terhasil
menunjukkan gentian halus tanpa manik
menjadikan gentian ini berpotensi untuk aplikasi yang luas.
Kata kunci: Elektroputaran; polikaprolakton; polimer bintang
REFERENCES
An, J.H.,
Kim, H.S., Chung, D.J. & Lee, D.S. 2001. Thermal behavior of
poly(ԑ-caprolactone)-poly(ethylene glycol)-
poly(ԑ-caprolactone) tri-block copolymers.
Journal of Materials Science 36: 715-722.
Aryal, S., Prabaharan, M., Pilla, S. & Gong, S. 2009. Biodegradable and biocompatible
multi-arm star amphiphilic block copolymer as a carrier for hydrophobic
drug delivery. International Journal of Biological Macromolecules
44: 346-352.
Bao, W., Zhang, Y., Yin, G. & Wu, J. 2008. The structure and property
of the electrospinning silk fibroin/gelatin blend nanofibers. E-Polym. 8: 1131-1139.
Bosworth,
L.A. & Downes, S. 2011. Electrospinning
for Tissue Regeneration. Oxford, UK: Woodhead
Publishing in Materials.
Castillo,
R.V. & Muller, A.J. 2009. Crystallization and morphology of
biodegradable or biostable single and
double crystalline block copolymers. Progress in Polymer Science
34(6): 516-560.
Colwell,
J.M. 2008. Synthesis of polycaprolactone
polymers for bone tissue repair. PhD Thesis, Queensland University
of Technology, Australia (Unpublished).
DerSchueren, L.V., DeSchoenmaker,
B., Kalaoglu, O.I. & Clerck,
K.D. 2011. An alternative solvent system for the steady state electrospinning
of polycaprolactone. European Polymer
Journal 47(6): 1256-1263.
Fong,
H., Liu, W., Wang, C.S. & Vaia, R.A.
2002. Generation of electrospun fibers
of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymers
43: 775-780.
Fong,
H., Chun, I. & Reneker, D.H. 1999.
Beaded nanofibers formed during electrospinning. Polymer 40(16):
4585-4592.
Frenot, A. & Chronakis,
I.S. 2003. Polymer nanofibers assembled by electrospinning. Current
Opinion in Colloid and Interface Science 8: 64-75.
Gaucher, G., Dufresne, M.H., Sant,
V.P., Kang, N., Maysinger, D. & Leroux, J.C. 2005. Block copolymer micelles: Preparation,
characterization and application in drug delivery. Journal of
Controlled Release 109: 169-188.
Gazzarri, M., Bartoli,
C., Mota, C., Puppi,
D., Dinucci, D., Volpi, S. & Chiellini, F. 2013. Fibrous star poly(ԑ-caprolactone) melt-electrospun scaffolds
for wound healing applications. J. Bioactive. Com. Polym. 28(5): 492-507.
Ghalia, M.A. & Dahman, Y. 2015. Radiation
crosslinking polymerization of poly(vinyl
alcohol) and poly(ethylene glycol) with controlled drug release.
Journal of Polymer Research 22(218): 1-9.
Grafahrend,
D., Heffels, K.H., Beer, M.V., Gasteier,
P., Moller, M., Boehm, G., Dalton, P.D. & Groll,
J. 2010. Degradable polyester scaffolds with controlled surface
chemistry combining minimal protein adsorption with specific bioactivation.
Nature Materials 10: 67-73.
Grayson, S.M., Poree, D.E., Giles, M.D., Lawson, L.B. & He, J. 2011.
Synthesis of amphiphilic star block copolymers and their evaluation
as transdermal carriers. Biomacromolecules
12: 898-906.
Gong, C.Y., Shi,
S., Dong, P.W., Yang, B., Qi, X.R., Guo,
G., Gu, Y.C., Zhao, X., Wei, Y.Q. & Qian, Z.Y. 2009. Biodegradable
in situ gel-forming controlled drug delivery system based
on thermosensitive PCL-PEG-PCL hydrogel:
Part 1-synthesis, characterization, and acute toxicity evaluation.
Journal of Pharmaceutical Sciences 98: 4684-4694.
Huang, Z.M., Zhang,
Y.Z., Kotaki, M. & Ramakrishna, S.
2003. A review on polymer nanofibers by electrospinning and their
applications in nanocomposites. Composites Science and Technology
63: 2223-2253.
Hua, C. & Dong,
C.M. 2007. Synthesis, characterization, effect of architecture on
crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles
thereof. Journal of Biomedical Materials Research Part A 82(3):
689-700.
Izunobi, J.U. & Higginbotham,
C.L. 2011. Polymer molecular weight analysis by 1H NMR spectroscopy.
J. Chem. Educ. 88: 1098-1104.
Kakizawa, Y. & Kataoka, K. 2002. Block copolymer micelles for delivery of
gene and related compounds. Advanced Drug Delivery Reviews 54:
203-222.
Kaur, K. & Juglan, K.C. 2015. Studies of molecular interaction in the
binary mixture of chloroform and methanol by using ultrasonic technique.
Der Pharma Chemica 7(2): 160-167.
Khanna, K., Varshney, S. & Kakkar, A. 2010.
Miktoarm star polymers: Advances in synthesis,
self-assembly, and applications. Polym.
Chem. 1: 1171-1185
Lee, H.C., Chang,
T., Harville, S. & Ways, J.W. 1998.
Characterization of linear and star polystyrene by temperature-gradient
interaction chromatography with a light-scattering detector. Macromolecules
31(3): 690-694.
Lee, H.J., Lee, S.J.,
Uthaman, S., Thomas, R.G., Hyun, H., Jeong, Y.Y., Cho, C.S. & Park, I.K. 2015. Biomedical applications
of magnetically functionalized organic/inorganic hybrid nanofibers.
Int. J. Mol. Sci. 16: 13661-13677.
Lee, G., Song, J.
& Yoon, K. 2010. Controlled wall thickness and porosity of polymeric
hollow nanofibers by coaxial electrospinning. Macromolecular
Research 18: 571-576.
Letchford, K., Zastre, J., Liggins, R. & Burt,
H. 2005. Synthesis and micellar characterization of short block
length methoxy poly(ethylene glycol)-block-poly(caprolactone)
diblock copolymers. Colloid Surface
B 35(2): 81-91.
Li, H., Qiao, T., Song, P., Guo, H., Song,
X., Zhang, B. & Chen, X. 2015. Star-shaped PCL/PLLA blended
fiber membrane via electrospinning. Journal of Biomaterials Science,
Polymer Edition 26(7): 420-432.
Li, R., Li, X., Xie, L., Ding, D., Hu, Y., Qian, X., Yu, L., Ding, Y., Jiang,
X. & Liu, B. 2009. Preparation and evaluation of PEG-PCL nanoparticles
for local tetradrine delivery. International
Journal of Pharmaceutics 379: 158-166.
Li, X., Yang, C.,
Yang, S. & Li, G. 2012. Fiber-optical sensors: Basics and applications
in multiphase reactors. Sensors 12: 2519-12544.
Lim, H.J., Lee, H.,
Kim, K.H., Huh, J., Ahn, C.H. & Kim,
W.J. 2013. Effect of molecular architecture on micellization,
drug loading and releasing of multi-armed poly(ethylene-glycol-b-poly(e-caprolactone) star polymers. Colloids Polymer Science 291:
1817-1827.
Lu, C., Guo, S.R., Zhang, Y. & Yin, M. 2006. Synthesis and aggregation
behavior of four types of different shaped PCL-PEG block copolymers.
Polymer International 55(6): 694-700.
Maglio, G., Nese, G., Nuzzo, M. & Palumbo,
R. 2004. Synthesis and characterization of star-shaped diblock
poly(e-caprolactone)/poly(ethylene
oxide) copolymers. Macromolecular Rapid Communications 25:
1139-1144.
Mckee, M.G., Wilkes, G.L.,
Colby, R.H. & Long, T.E. 2004. Correlations of solution rheology
with electrospun fiber formation of linear
and branched polyesters. Macromolecules 37: 1760-1767.
Meier, A.R., Aerts, N.H., Staal, B.P., Rasa,
M. & Schubert, U.S. 2005. PEO-b-PCL Block copolymers: Synthesis,
detailed characterization, and selected micellar drug encapsulation
behavior. Macromol. Rapid Commun.
26: 1918-1924.
Mota, C., Puppi, D., Dinucci, D., Gazzarri, M. & Chiellini, F.
2013a. Additive manufacturing of star poly(ε-caprolactone)
wetspun scaffolds for bone tissue engineering
applications. J. Bioactive Com. Polym.
28(4): 320-340.
Mota, C., Puppi, D., Gazzarri, M., Bartolo, P. & Chiellini, F.
2013b. Melt electrospinning writing of three-dimensional star poly(ԑ-caprolactone) scaffolds. Polym.
Int. 62: 893-900.
Nabid, M.R., Razaei, S.J.T., Niknejad, H., ENtezami, A.A., Oskooie, H.A. &
Heravi, M.M. 2011. Self-assembled micelles
of well-defined pentaerythritol-centered
amphiphilic. A4B8
star-blocked copolymers based on PCL and PEG for hydrophobic
dug deliver. Polymer 52: 2799-2809.
Nishiyama, N. & Kataoka, K. 2006. Current state, achievements, and future
prospects of polymeric micelles as nanocarriers
for drug and gene delivery. Pharmacology Therapeutics 112:
630-648.
Puppi, D., Piras, A.M., Chiellini, F., Chiellini, E., Martins, A., Leonor, I.B., Neves, N. & Reis, R. 2011. Optimized electro- and wet-spinning
techniques for the production of polymeric fibrous scaffolds loaded
with bisphosphonate and hydroxyapatite. J. Tissue Eng. Regen.
Med. 5: 253-263.
Puppi, D., Detta, N., Piras, A.M., Chiellini, F. & Clarke, D.A. 2010. Development of electrospun three-arm star poly(caprolactone)
mashes for tissue engineering applications. Macromolecular Bioscience
10: 887-897.
Pierozynski, B. 2011. On the
hydrogen evolution reaction at nickel-coated carbon fibre
in 30 wt. % KOH solution. Int. J. Electrochem.
Sci. 6: 63-77.
Qian, Y., Su, Y.,
Li, X., Wang, H. & He, C. 2010. Electrospinning of polymethyl
methacrylate nanofibres in different solvents.
Iranian Polymer Journal 19: 123-129.
Rosic, R., Kocbek, R., Pelipenko, J., Kristl, J. & Baumgartner, S. 2013. Nanofibers and their
biomedical use. Acta Pharm.
63: 295-304.
Smallwood, I.M. 1996.
Handbook of Organic Solvents Properties. Toronto, Canada:
Wiley & Sons.
Soliman, G.M., Sharma, R., Choi, A.O., Varshney, S.K., Winnik, F.M., Kakkar,
A. & Maysinger, D. 2010. Tailoring
the efficiency of nimodipine drug delivery
using nanocarriers base on A2B miktoarm star polymers.
Biomaterials 31: 8382-8392.
Subbiah, T., Bhat, G.S., Tock, R.W., Parameswaran, S. & Ramkumar,
S.S. 2005. Electrospinning of nanofibers. Journal of Applied
Polymer Science 96: 557-569.
Sun, J., He, C., Zhuang, X., Jing,
X. & Chen, X. 2011. The crystallization behavior of poly(ethylene
glycol)-poly (ε-caprolactone) diblock copolymers with asymmetric block compositions. Journal
of Polymer Research 18: 2161-2168.
Tao, X. 2001. Smart Fibers, Fabrics
and Clothing. LLC. Cambridge CB1 6AH, England: Woodhead
Publishing Ltd and CRC Press.
Teo, W.E. & Ramakrishna, S. 2006.
A review on electrospinning design and nanofibre
assemblies. Nanotechnology 17: 89-106.
Tsou, S.Y., Lin, H.S. & Wang,
C. 2011. Studies on the electrospun nylon
6 nanofibers from polyelectrolyte solutions: Effects of solution
concentration and temperature. Polymer v52(14): 3127-3136.
Uhrich, K.E., Djordjevic,
J. & Michniak, B. 2003. Amphiphilic
star-like macromolecules as novel carriers for topical delivery
of nonsteroidal anti-inflammatory drugs. AAPs PharmSci.
5: 1-12.
Wan Abdul Khodir,
W.K., Abdul Razak, A.H., Ng, M.H., Guarino, V. & Susanti, D. 2018.
Encapsulation and characterization of gentamicin sulfate in the
collagen added electrospun nanofibers
for skin regeneration. J. Funct. Biomater.
9(2): 36.
Wang, F., Bronich,
T.K., Kabannov, A.V., Rauh,
D. & Roovers, J. 2005. Synthesis and
evaluation of a star amphiphilic block copolymer from poly(e-caprolactone)
and poly(ethylene glycol) as a potential
drug delivery carrier. Bioconjugate
Chemistry 16: 397-405.
Zeronian, S.H., Inglesby,
M.K., Pan, N., Lin, D., Sun, G., Soni,
B., Alger, K.W. & Gibbon, J.D. 1999. The fine structure of bicomponent
polyester fibers. Journal of Applied Polymer Science 71:
1163-1173.
Zeiml, M., Leithner,
D., Lackner, R. & Mang,
H.A. 2006. How do polypropylene fibers improve the spalling behavior
of in-situ concrete. Cement and
Concrete Research 36: 929-942.
Zhou, S., Deng, X. & Yang, H.
2003. Biodegradable poly(e-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and
their use as drug carriers for a controlled delivery system. Biomaterials
24: 3563-3570.
Zhu, J., Zhu, H., Njuguna, J. & Abhyankar, H. 2003. Recent development of
flax fibres and their reinforced composites
based on different polymeric matrices. Materials 6: 5171-
5198.
*Corresponding author;
email: wkhartini@iium.edu.my
|