Sains Malaysiana 48(10)(2019):
2277–2284
http://dx.doi.org/10.17576/jsm-2019-4810-24
Source Term Atmospheric Release and
Core Inventory Analysis for the PUSPATI TRIGA Reactor under Severe
Accident Conditions
(Pengeluaran Atmosfera Source Term dan
Analisis Inventori Teras bagi Reaktor
PUSPATI TRIGA di bawah
Keadaan Kemalangan
yang Teruk)
SITI NUR AIN SULAIMAN1,
FAIZAL MOHAMED1,2*, AHMAD NABIL AB
RAHIM3, MOHAMMAD SUHAIMI KASSIM3 & NA’IM SHAUQI
HAMZAH3
1Nuclear Science Programme,
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Institut Islam Hadhari, Kompleks Tun Abdullah Mohd Salleh, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Reactor
Technology Center, Malaysian Nuclear Agency, MESTECC, Bangi,
43000 Kajang, Selangor Darul
Ehsan, Malaysia
Received:
8 November 2018/Accepted: 22 August 2019
ABSTRACT
The estimation
of core inventory and source term of nuclear reactor is a part of
procedures for conducting a Level 2 Probabilistic Safety Assessment
(PSA).
Currently, there are not many studies in this area for nuclear research
reactors, as it is yet to be made compulsory in the regulatory licensing
process among the nuclear-powered countries. This assessment is
important to be done in order to be informed about the severity
of a nuclear accident. In this study, the type of radionuclides
and their activities when unintentionally released to the atmosphere
were calculated using the ORIGEN2
code. This work was carried out for PUSPATI TRIGA Reactor (RTP)
under a hypothetical severe accident. The core inventory for RTP was
determined by assuming the reactor to be operated continuously for
365 days at full power (1 MWt). 42 radionuclides
were chosen due to their dominant effects in source term. The atmospheric
release of radionuclides is not the same as another depending on
the physical condition of the reactor after the accident. The effects
of these radionuclides when exposed to the public may cause serious
health concern.
Keywords:
Atmospheric dispersion; core inventory; ORIGEN2; severe accident; source
term
ABSTRAK
Anggaran inventori
teras dan source
term untuk reaktor
nuklear merupakan
sebahagian daripada prosedur dalam menjalankan Penilaian Kebarangkalian Keselamatan (PSA)
Tahap 2. Pada
masa ini, tidak banyak
kajian sebegini
dilakukan ke atas
reaktor nuklear
penyelidikan, memandangkan ia belum lagi
diwajibkan dalam
peraturan proses perlesenan dalam kalangan negara yang menggunakan tenaga nuklear. Penilaian sebegini adalah penting untuk dijalankan untuk mengetahui tahap keterukan situasi apabila berlakunya kemalangan nuklear. Dalam kajian ini, jenis
radionuklid dan
aktivitinya apabila berlaku perlepasan tidak sengaja dikenalpasti
dengan menggunakan
kod ORIGEN2. Kajian
ini dilakukan
ke atas Reaktor
TRIGA
PUSPATI (RTP) yang dianggap
berada dalam
keadaan kemalangan teruk hipotetik. Inventori teras untuk RTP ditentukan
dengan andaian
bahawa reaktor beroperasi selama 365 hari tanpa henti
dengan kuasa
penuh (1 MWt). 42 radionuklid dipilih berdasarkan kesan dominan dalam source term.
Bergantung kepada
keadaan fizikal reaktor selepas kemalangan terjadi, situasi perlepasan radionuklid ke atmosfera adalah tidak sama mengikut
kes. Kesan daripada dedahan radionuklid ini kepada orang awam juga boleh menyebabkan
masalah kesihatan
yang serius.
Kata kunci: Inventori teras; kemalangan teruk; ORIGEN2; perlepasan
atmosfera; source term
REFERENCES
Apostoaei, A.I.,
Burns, R.E., Hoffman, F.O., Ijaz, T.,
Lewis, C.J., Nair, S.K. & Widner,
T.E. 1999. Radionuclide Releases to the Clinch River from White
Oak Creek on the Oak Ridge Reservation - an Assessment of Historical
Quantities Released, Off-Site Radiation Doses, and Health Risks,
hlm. Vol. 4. Tennessee Department of Health.
Foudil, Z.,
Mohamed, B. & Tahar, Z. 2017. Estimating
of core inventory, source term and doses results for the NUR research
reactor under a hypothetical severe accident. Progress in Nuclear
Energy 100: 365-372. doi:10.1016/j. pnucene.2017.07.013.
Gandhi, S. & Kang, J. 2013. Nuclear safety and nuclear security
synergy. Annals of Nuclear Energy 60: 357-361. doi:10.1016/j.anucene.2013.05.002.
Glumac, B.,
Ravnik, M. & Logar, M. 1997.
Criticality safety assessment of a TRIGA reactor spent-fuel pool
under accident conditions 117(2): 248-254. doi:10.13182/NT97-A35329.
Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura,
J., Ohira, T., Tominaga,
T., Akashi, M., Hirohashi, N., Ishikawa,
T., Kamiya, K., Shibuya, K., Yamashita, S. & Chhem, R.K. 2015. Health effects of radiation and other health
problems in the aftermath of nuclear accidents, with an emphasis
on Fukushima. The Lancet 386(9992): 479-488. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=referen
ce&D=medl&NEWS=N&AN=26251393%0Ahttp://www. journals.elsevier.com/the-lancet/%0Ahttp://ovidsp.ovid.com/
ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS
=N&AN=605503106.
Haydn, M. 2009. Accident Scenarios with Environmental Impact of
the TRIGA Mark II Reactor Vienna. Diploma Thesis. Atominstitut,
Vienna University of Technology (Unpublished).
IAEA. 2016. Safety of Nuclear Power Plants: Design (NS-R-1) 1:
73.
IAEA. 2008. Derivation of the Source Term and Analysis of the
Radiological Consequences of Research Reactor Accidents.
IAEA. 2003. Accident Analysis for Nuclear Power Plants with Pressurized
Water Reactors. Safety Reports (30): 65.
IAEA. 1996. Procedures for Conducting Probabilistic Safety Assessments
of Nuclear Power Plants (Level 3). http:// gnssn.iaea.org/Superseded
Safety Standards/Safety_ Series_050-P-12_1996.pdf.
IAEA. 1993. Defining initiating events for purposes of probabilistic
safety assessment (September).
IAEA. 1992. Research Reactor Core Conversion Guidebook 1.
Kadowaki, M.,
Nagai, H., Terada, H., Katata, G. &
Akari, S. 2017. Improvement of atmospheric dispersion simulation
using an advanced meteorological data assimilation method to reconstruct
the spatiotemporal distribution of radioactive materials released
during the Fukushima Daiichi Nuclear Power Station accident. Energy
Procedia 131: 208-215. doi:10.1016/j.egypro.2017.09.465.
Malek, M.A., Chisty, K.J.A. & Rahman, M.M.
2012. Dose distribution of 131I, 132I, 133I, 134I, and 135I due
to a hypothetical accident of TRIGA Mark-II research reactor. International
Journal of Basic and Applied Sciences. doi:10.14419/ijbas.v1i3.110.
Margeanu, S., Margeanu,
C.A., Paunoiu, C. & Angelescu,
T. 2015. Dose calculation for accident situations at TRIGA research
reactor using LEU fuel type. Romanian Reports in Physics 60(January
2008): 57-61. https://www.researchgate. net/publication/268405124_Dose_calculation_for_accident_
situations_at_TRIGA_research_reactor_using_LEU_fuel_
type.
Marques, P. 2012. The deleterious
effects of the nuclear crisis in Japan. Estudos
Avancados 26(74): 309-312. doi:10.1590/
S0103-40142012000100022.
Mirza, S.M., Khan, A. & Mirza,
N.M. 2010. Post-shutdown decay power and radionuclide inventories
in the discharged fuels of HEU and potential LEU miniature neutron
source reactors. Annals of Nuclear Energy 37(5): 701-706.
doi:10.1016/j. anucene.2010.02.001.
Muswema, J.L., Ekoko,
G.B., Lukanda, V.M., Lobo, J.K.K., Darko, E.O. & Boafo, E.K. 2015.
Source term derivation and radiological safety analysis for the
TRICO II research reactor in Kinshasa. Nuclear Engineering and
Design 281: 51-57. doi:10.1016/j.nucengdes.2014.11.014.
NRC. 2000. Alternative Radiological
Source Terms for Evaluating Design Basis Accidents at Nuclear Power
Reactors, Regulatory Guide 1.183.
Obaidurrahman, K. & Gupta, S.K. 2013. Reactor
core heterogeneity effects on radionuclide inventory. Annals
of Nuclear Energy 53: 244-253. doi:10.1016/j.anucene.2012.09.016
ORNL. 1999. RSICC Computer Code Collection:
Origen 2.1 224.
Parks, C.V. 1992. Overview of ORIGEN2
and ORIGEN-S: Capabilities and Limitations. American Nuclear
Society 24(04): 57-64.
PUSPATI. 2017. Safety Analaysis Report for PUSPATI TRIGA MARK II Reactor Facility,
Tech. rep., Pusat Penyelidikan
Atom Tun Ismail.
Raza, S.S. & Iqbal, M. 2005. Atmospheric
dispersion modeling for an accidental release from the Pakistan
Research Reactor-1 (PARR-1). Annals of Nuclear Energy 32(11):
1157-1166. doi:10.1016/j.anucene.2005.03.008.
Rim, K.T., Koo, K.H. & Park, J.S.
2013. Toxicological evaluations of rare earths and their health
impacts to workers: A literature review. Safety and Health at
Work 4(1): 12-26. doi:10.5491/shaw.2013.4.1.12.
Rozainiee, M., Ngo, S.P., Salema, A.A. & Tan, K.G. 2008. Renewable energy sources
from biomass through incineration. The Ingenieur
37: 13-21.
Tao, Wei-Kao. 2012. Impact of aerosols
on convectiveclouds and precipitation.
Reviews of Geophysics (2011). doi:10.1029/20 11RG000369.1.INTRODUCTION.
Ullah, S., Awan, S.E., Mirza, N.M. &
Mirza, S.M. 2010. Source term evaluation for the upgraded LEU Pakistan
Research Reactor-1 under severe accidents. Nuclear Engineering
and Design 240(11): 3740-3750. doi:10.1016/j. nucengdes.2010.08.017.
Usang, M.D., Hamzah,
N.S., Abi, M.J.B., Rawi, M.M.Z. &
Abu, M.P. 2014. TRIGA MARK-II source term. AIP Conference Proceedings
1584: 45-49. doi:10.1063/1.4866102.
Villa, M., Haydn, M., Steinhauser, G. & Böck, H. 2010.
Accident scenarios of the TRIGA Mark II reactor in Vienna. Nuclear
Engineering and Design 240(12): 4091-4095. doi:10.1016/j. nucengdes.2010.10.001.
*Corresponding author;
email: faizalm@ukm.edu.my
|