Sains Malaysiana 48(10)(2019): 2277–2284

http://dx.doi.org/10.17576/jsm-2019-4810-24

 

Source Term Atmospheric Release and Core Inventory Analysis for the PUSPATI TRIGA Reactor under Severe Accident Conditions

(Pengeluaran Atmosfera Source Term dan Analisis Inventori Teras bagi Reaktor PUSPATI TRIGA di bawah Keadaan Kemalangan yang Teruk)

 

SITI NUR AIN SULAIMAN1, FAIZAL MOHAMED1,2*, AHMAD NABIL AB RAHIM3, MOHAMMAD SUHAIMI KASSIM3 & NA’IM SHAUQI HAMZAH3

 

1Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institut Islam Hadhari, Kompleks Tun Abdullah Mohd Salleh, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Reactor Technology Center, Malaysian Nuclear Agency, MESTECC, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 8 November 2018/Accepted: 22 August 2019

 

ABSTRACT

The estimation of core inventory and source term of nuclear reactor is a part of procedures for conducting a Level 2 Probabilistic Safety Assessment (PSA). Currently, there are not many studies in this area for nuclear research reactors, as it is yet to be made compulsory in the regulatory licensing process among the nuclear-powered countries. This assessment is important to be done in order to be informed about the severity of a nuclear accident. In this study, the type of radionuclides and their activities when unintentionally released to the atmosphere were calculated using the ORIGEN2 code. This work was carried out for PUSPATI TRIGA Reactor (RTP) under a hypothetical severe accident. The core inventory for RTP was determined by assuming the reactor to be operated continuously for 365 days at full power (1 MWt). 42 radionuclides were chosen due to their dominant effects in source term. The atmospheric release of radionuclides is not the same as another depending on the physical condition of the reactor after the accident. The effects of these radionuclides when exposed to the public may cause serious health concern.

Keywords: Atmospheric dispersion; core inventory; ORIGEN2; severe accident; source term

 

ABSTRAK

Anggaran inventori teras dan source term untuk reaktor nuklear merupakan sebahagian daripada prosedur dalam menjalankan Penilaian Kebarangkalian Keselamatan (PSA) Tahap 2. Pada masa ini, tidak banyak kajian sebegini dilakukan ke atas reaktor nuklear penyelidikan, memandangkan ia belum lagi diwajibkan dalam peraturan proses perlesenan dalam kalangan negara yang menggunakan tenaga nuklear. Penilaian sebegini adalah penting untuk dijalankan untuk mengetahui tahap keterukan situasi apabila berlakunya kemalangan nuklear. Dalam kajian ini, jenis radionuklid dan aktivitinya apabila berlaku perlepasan tidak sengaja dikenalpasti dengan menggunakan kod ORIGEN2. Kajian ini dilakukan ke atas Reaktor TRIGA PUSPATI (RTP) yang dianggap berada dalam keadaan kemalangan teruk hipotetik. Inventori teras untuk RTP ditentukan dengan andaian bahawa reaktor beroperasi selama 365 hari tanpa henti dengan kuasa penuh (1 MWt). 42 radionuklid dipilih berdasarkan kesan dominan dalam source term. Bergantung kepada keadaan fizikal reaktor selepas kemalangan terjadi, situasi perlepasan radionuklid ke atmosfera adalah tidak sama mengikut kes. Kesan daripada dedahan radionuklid ini kepada orang awam juga boleh menyebabkan masalah kesihatan yang serius.

Kata kunci: Inventori teras; kemalangan teruk; ORIGEN2; perlepasan atmosfera; source term

REFERENCES

Apostoaei, A.I., Burns, R.E., Hoffman, F.O., Ijaz, T., Lewis, C.J., Nair, S.K. & Widner, T.E. 1999. Radionuclide Releases to the Clinch River from White Oak Creek on the Oak Ridge Reservation - an Assessment of Historical Quantities Released, Off-Site Radiation Doses, and Health Risks, hlm. Vol. 4. Tennessee Department of Health.

Foudil, Z., Mohamed, B. & Tahar, Z. 2017. Estimating of core inventory, source term and doses results for the NUR research reactor under a hypothetical severe accident. Progress in Nuclear Energy 100: 365-372. doi:10.1016/j. pnucene.2017.07.013.

Gandhi, S. & Kang, J. 2013. Nuclear safety and nuclear security synergy. Annals of Nuclear Energy 60: 357-361. doi:10.1016/j.anucene.2013.05.002.

Glumac, B., Ravnik, M. & Logar, M. 1997. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions 117(2): 248-254. doi:10.13182/NT97-A35329.

Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura, J., Ohira, T., Tominaga, T., Akashi, M., Hirohashi, N., Ishikawa, T., Kamiya, K., Shibuya, K., Yamashita, S. & Chhem, R.K. 2015. Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima. The Lancet 386(9992): 479-488. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=referen ce&D=medl&NEWS=N&AN=26251393%0Ahttp://www. journals.elsevier.com/the-lancet/%0Ahttp://ovidsp.ovid.com/ ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS =N&AN=605503106.

Haydn, M. 2009. Accident Scenarios with Environmental Impact of the TRIGA Mark II Reactor Vienna. Diploma Thesis. Atominstitut, Vienna University of Technology (Unpublished).

IAEA. 2016. Safety of Nuclear Power Plants: Design (NS-R-1) 1: 73.

IAEA. 2008. Derivation of the Source Term and Analysis of the Radiological Consequences of Research Reactor Accidents.

IAEA. 2003. Accident Analysis for Nuclear Power Plants with Pressurized Water Reactors. Safety Reports (30): 65.

IAEA. 1996. Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 3). http:// gnssn.iaea.org/Superseded Safety Standards/Safety_ Series_050-P-12_1996.pdf.

IAEA. 1993. Defining initiating events for purposes of probabilistic safety assessment (September).

IAEA. 1992. Research Reactor Core Conversion Guidebook 1.

Kadowaki, M., Nagai, H., Terada, H., Katata, G. & Akari, S. 2017. Improvement of atmospheric dispersion simulation using an advanced meteorological data assimilation method to reconstruct the spatiotemporal distribution of radioactive materials released during the Fukushima Daiichi Nuclear Power Station accident. Energy Procedia 131: 208-215. doi:10.1016/j.egypro.2017.09.465.

Malek, M.A., Chisty, K.J.A. & Rahman, M.M. 2012. Dose distribution of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research reactor. International Journal of Basic and Applied Sciences. doi:10.14419/ijbas.v1i3.110.

Margeanu, S., Margeanu, C.A., Paunoiu, C. & Angelescu, T. 2015. Dose calculation for accident situations at TRIGA research reactor using LEU fuel type. Romanian Reports in Physics 60(January 2008): 57-61. https://www.researchgate. net/publication/268405124_Dose_calculation_for_accident_ situations_at_TRIGA_research_reactor_using_LEU_fuel_ type.

Marques, P. 2012. The deleterious effects of the nuclear crisis in Japan. Estudos Avancados 26(74): 309-312. doi:10.1590/ S0103-40142012000100022.

Mirza, S.M., Khan, A. & Mirza, N.M. 2010. Post-shutdown decay power and radionuclide inventories in the discharged fuels of HEU and potential LEU miniature neutron source reactors. Annals of Nuclear Energy 37(5): 701-706. doi:10.1016/j. anucene.2010.02.001.

Muswema, J.L., Ekoko, G.B., Lukanda, V.M., Lobo, J.K.K., Darko, E.O. & Boafo, E.K. 2015. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa. Nuclear Engineering and Design 281: 51-57. doi:10.1016/j.nucengdes.2014.11.014.

NRC. 2000. Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors, Regulatory Guide 1.183.

Obaidurrahman, K. & Gupta, S.K. 2013. Reactor core heterogeneity effects on radionuclide inventory. Annals of Nuclear Energy 53: 244-253. doi:10.1016/j.anucene.2012.09.016

ORNL. 1999. RSICC Computer Code Collection: Origen 2.1 224.

Parks, C.V. 1992. Overview of ORIGEN2 and ORIGEN-S: Capabilities and Limitations. American Nuclear Society 24(04): 57-64.

PUSPATI. 2017. Safety Analaysis Report for PUSPATI TRIGA MARK II Reactor Facility, Tech. rep., Pusat Penyelidikan Atom Tun Ismail.

Raza, S.S. & Iqbal, M. 2005. Atmospheric dispersion modeling for an accidental release from the Pakistan Research Reactor-1 (PARR-1). Annals of Nuclear Energy 32(11): 1157-1166. doi:10.1016/j.anucene.2005.03.008.

Rim, K.T., Koo, K.H. & Park, J.S. 2013. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Safety and Health at Work 4(1): 12-26. doi:10.5491/shaw.2013.4.1.12.

Rozainiee, M., Ngo, S.P., Salema, A.A. & Tan, K.G. 2008. Renewable energy sources from biomass through incineration. The Ingenieur 37: 13-21.

Tao, Wei-Kao. 2012. Impact of aerosols on convectiveclouds and precipitation. Reviews of Geophysics (2011). doi:10.1029/20 11RG000369.1.INTRODUCTION.

Ullah, S., Awan, S.E., Mirza, N.M. & Mirza, S.M. 2010. Source term evaluation for the upgraded LEU Pakistan Research Reactor-1 under severe accidents. Nuclear Engineering and Design 240(11): 3740-3750. doi:10.1016/j. nucengdes.2010.08.017.

Usang, M.D., Hamzah, N.S., Abi, M.J.B., Rawi, M.M.Z. & Abu, M.P. 2014. TRIGA MARK-II source term. AIP Conference Proceedings 1584: 45-49. doi:10.1063/1.4866102.

Villa, M., Haydn, M., Steinhauser, G. & Böck, H. 2010. Accident scenarios of the TRIGA Mark II reactor in Vienna. Nuclear Engineering and Design 240(12): 4091-4095. doi:10.1016/j. nucengdes.2010.10.001.

 

*Corresponding author; email: faizalm@ukm.edu.my

 

 

 

 

previous