Sains Malaysiana 48(12)(2019):
2605–2612
http://dx.doi.org/10.17576/jsm-2019-4812-01
The
Effect of Glufosinate Ammonium in Three Different Textured Soil Types under
Malaysian Tropical Environment
(Kesan Glufosinat Ammonium pada Tiga Jenis Tanah Berbeza Tekstur
dalam PersekitaranTropika Malaysia)
TAYEB M.A., ISMAIL B.S.
& MARDIANA-JANSAR K.*
Centre for Earth
Sciences and Environment, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
4 September 2019/Accepted: 3 October 2019
ABSTRACT
Glufosinate ammonium is a broad spectrum, non-selective, contact
and organophosphate herbicide which is commonly used in Malaysian oil palm
plantations. Research area was one of the oil palm growing areas of Malaysia is
located adjacent to the Tasik Chini, Pahang. Farmers use this herbicide to
control several types of unwanted plants which could compete with the oil palm
for nutrients. Rain water and the sprayed solution are easily adsorbed by soil
particles. The glufosinate ammonium sorption was determined by the batch
equilibrium technique. The collected soil samples (0-50 cm depth) divided into
five groups at 10 cm depth intervals. Glufosinate ammonium adsorption
coefficients were correlated with the soil pH, organic matter (OM),
clay content, and cation exchange capacity (CEC).
Series of glufosinate ammonium standard were as 0.01, 0.1, 0.25, 0.5, 1, 3, 5,
and 10 μm/mL. The Linear and Freundlich equations were fitted for
obtaining the adsorption and desorption isotherms. The result of the analyses
showed that adsorption of glufosinate ammonium was correlated to the clay
content. The clay fraction of the soil is the main absorbent of the glufosinate
ammonium. Desorption from the soil was indicated by the high binding strength
of the adsorbed glufosinate ammonium.
Keywords: Adsorption; desorption; glufosinate ammonium; linear
equation; sorption isotherm
ABSTRAK
Glufosinat ammonium adalah herbisid yang berspektrum luas, tidak
memilih, jenis sentuhan dan di dalam kumpulan organofosfat yang sering
digunakan dalam ladang kelapa sawit di Malaysia. Tapak kajian adalah di kawasan
penanaman kelapa sawit yang terletak bersebelahan dengan Tasik Chini, Pahang.
Petani menggunakan herbisid ini untuk mengawal beberapa jenis rumpai yang
mengganggu tanaman dan boleh bersaing dengan pokok kelapa sawit untuk
mendapatkan nutrien. Air hujan dan larutan herbisid mudah terserap oleh zarah
tanah. Penjerapan glufosinat ammonium ditentukan oleh teknik keseimbangan
berkelompok. Sampel tanah yang dikumpulkan (kedalaman 0-50 cm) dibahagikan
kepada lima kumpulan pada jarak 10 cm kedalaman. Koefisien penjerapan ammonium
glufosinat dikaitkan dengan pH tanah, bahan organik (OM),
kandungan tanah liat, dan kapasiti pertukaran kation (CEC).
Siri piawai amonium glufosinat ialah 0.01, 0.1, 0.25, 0.5, 1, 3, 5 dan 10
μm/mL. Persamaan Linear dan Freundlich dipasang untuk mendapatkan isoterma
penjerapan dan penyahjerapan. Hasil analisis menunjukkan bahawa penjerapan
amonium glufosinat dikaitkan dengan peratusan kandungan tanah liat. Sebahagian
tanah liat tanah adalah penjerap utama glufosinat ammonium. Penyahjerapan
daripada tanah ditunjukkan oleh kekuatan ikatan penjerapan glufosinat ammonium
yang tinggi.
Kata kunci: Glufosinat ammonium; isoterma penjerapan; penjerapan;
persamaan linear; penyahjerapan
REFERENCES
Accinelli,
C., Crepanti, C., Vicari, A. & Catizone, P. 2004. Influence of insecticidal
toxins from Bacillus thuringiensis subsp. kurstaki on the
degradation of glyphosate and glufosinate-ammonium in soil samples. Agric.
Ecosyst. Environ. 103(3): 497-507.
Allen-King,
R.M., Butler, B.J. & Reichert, B. 1995. Fate of the herbicide glufosinate-ammonium
in the sandy, low-organic-carbon aquifer at CFB Borden, Ontario, Canada. J.
Contam. Hydrol. 18(2): 161-179.
Allison,
L.E. 1965. Organic carbon. In Methods of Soil Analysis Part 2, edited by
Black, C.A. Wisconsin: American Society of Agronomy. p. 1367.
Behrendt,
H., Matthies, M., Gildemeister, H. & Görlitz, G. 1990. Leaching and
trans-formation of glufosinate-ammonium and its main metabolite in a layered
soil column. Environ. Toxicol. Chem. 9(5): 541-549.
Chang,
S.Y. & Liao, C.H. 2002. Analysis of glyphosate, glufosinate and
aminomethylphosphonic acid by capillary electrophoresis with indirect
florescence detection. J. Chromatogr. A 959(1-2): 309-315.
Chuah
Tse Seng, Lim Win Kent & Ismail B.S. 2018. Potential of oil palm frond
residues in combination with s-metolachlor for the inhibition of selected
herbicide-resistant biotypes of goosegrass emergence and seedling growth. Sains
Malaysiana 47(4): 671-682.
Corbett,
J.L., Askew, D., Thomas, W.E. & Wilcut, J.W. 2004. Weed efficacy
evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and
sulfosate. Weed Technol. 18(2): 443-453.
Dinehart,
S.K., Smith, L.M., McMurry, S.T., Anderson, T.A., Smith, P.N. & Haukos,
D.A. 2009. Toxicity of a glufosinate-and several glyphosate-based herbicides to
juvenile amphibians from the southern High Plains, USA. Sci. Total Environ. 407(3):
1065-1071.
Druart,
C., Delhomme, O., Vaufleury, A., Ntcho, E. & Millet, M. 2011. Optimization
of extraction procedure and chromatographic separation of glyphosate, glufosinate
and aminomethylphosphonic acid in soil. Anal. Bioanal. Chem. 39(4):
1725-1732.
EPA.
1986. Method 9080, Cation-exchange capacity of soils (ammonium acetate). www3.epa.gov/epawaste/hazard/
testmethods/sw846/pdfs/9080.pdf.
Gallina,
M.A. & Stephenson, G.R. 1992. Dissipation of [14C] glufosinate-ammonium in
two Ontario soils. J. Agric. Food Chem. 40(1): 165-168.
Gerhartz,
M. & Markus, K. 2010. Enrichment and low-level determination of glyphosate,
aminomethylphosphonic acid and glufosinate in drinking water after clean up by
cation exchange resin. J. Sep. Sci. 33(8): 1139-1146.
Goodwin,
L., Startin, J.R., Goodall, D.M. & Keely, B.J. 2003. Tandem mass
spectrometric analysis of glyphosate, glufosinate, aminomethylphosphonic acid
and methylphosphinicopropionic acid. Rapid Commun. Mass Spectrom. 17(9):
963-969.
Halimah,
M., Tan, Y.A., Ismail, B.S. & Tayeb, M.A. 2016. Dissipation
of fluroxypyr in a Malaysian agricultural soil with simulation
using the persist and Varleach Model. J. Oil Palm Res. 28(1):
26-33.
Ibanez,
M., Pozo, O.J., Ancho, J.V., Lopez, F.J. & Hernandez, F. 2005. Residue
determination of glyphosate, glufosinate and aminomethylphosphonic acid in
water and soil samples by liquid chromatography coupled to electrospray tandem
mass spectrometry. J. Chromatogr. A 1081(2): 145-155.
Ismail,
B.S., Choo, L.Y., Salmijah, S., Halimah, M. & Tayeb, M.A. 2015a.
Adsorption, desorption and mobility of cyfluthrin in three Malaysian tropical
soils of different textures. J. Environ. Biol. 36(5): 1105-1111.
Ismail,
B.S., Mazlinda, M. & Tayeb, M.A. 2015b. The persistence of Deltamethrin
Malaysian agricultural soils. Sains Malaysiana 44(1): 83-89.
Ismail,
B.S., Ooi, E.K. & Tayeb, M.A. 2015c. Degradation of triazine-2-14C metsulfuron-methyl in soil from an oil palm
plantation. PLoS ONE 10(10): e0138170.
Ismail,
B.S., Prayithno & Tayeb, M.A. 2015d. Contamination of rice field water with
sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah,
Malaysia. J. Environ. Monit. Assess. 187: 406.
Ismail, B.S., Eng, O.K.
& Tayeb, M.A. 2015e. Laboratory assessment of 14c-PhenylMetsulfuron-Methyl
degradation in an oil palm plantation soil. J. Oil Palm Res. 27(4):
403-416.
Ismail, B.S., Mazlinda,
M. & Tayeb, M.A. 2013. Adsorption, desorption and mobility of Cypermethrin
and Deltamethrin in Malaysian soils. Int. J. Plant Animal Environ. Sci. 3(4):
23-29.
Jariani, S.M.J.,
Rosenani, A.B., Samsuri, A.W., Shukor, A.J. & Ainie, H.K., 2010. Adsorption
and desorption of glufosinate ammoniumin soils cultivated with oil palm in
Malaysia. Malaysian J. Soil Sci. 14: 41-52.
Kah, M. & Brown,
C.D. 2006. Adsorption of ionisable pesticides in soils. Reviews of
Environmental Contamination and Toxicology 188: 149-217.
Laitinen, P., Siimes,
K.S., Ramo, L., Jauhiainen, L., Eronen, L., Oinonen, S. & Hartikainen, H.
2008. Effect of soil phosphorus status on environmental risk assessment of
glyphosate and glufosinate ammonium. J. Environ. Qual. 37(3): 830-838.
Nagatomi, Y., Yoshioka,
T., Yanagisawa, M., Uyama, A. & Mochizuki, N. 2013. Simultaneous LC-MS/MS
analysis of glyphosate, glufosinate, and their metabolic products in beer,
barley tea, and their ingredients. Biosci. Biotechnol. Biochem. 77(11):
2218-2221.
Qian, K., He, S., Tang,
T., Shi, T., Li, J. & Cao, Y. 2011. A rapid liquid chromatography method
for determination of glufosinate residue in maize after derivatisation. Food
Chem. 127(2): 722-726.
Sancho, J., Hernández,
V.F., López, F.J., Hogendoorn, E.A., Dijkman, E. & Zoonen, P.V. 1996. Rapid
determination of glufosinate, glyphosate and aminomethylphosphonic acid in
environmental water samples using precolumn fluorogenic labeling and
coupled-column liquid chromatography. J. Chromatogr. A 737(1): 75-83.
Screpanti, C.,
Accinelli, C., Vicari, A. & Catizone, P. 2005. Glyphosate and
glufosinate-ammonium runoff from a corn-growing area in Italy. Agron.
Sustain. Dev. 25: 407-412.
Shin, J.S., Kim, K.M.,
Lee, D.J., Lee, S.B., Burgos, N.R. & Kuk, Y.I. 2011. Resistance levels and
fitness of glufosinate-resistant transgenic sweet potato in field experiments. Field
Crops Research 121(3): 324-332.
Tayeb, M.A., Ismail,
B.S., Jansar-Mardiana, K. & Goh Choo Ta. 2016. Troubleshooting and
maintenance of high-performance liquid chromatography during herbicide analysis:
An overview. Sains Malaysiana 45(2): 237-245.
Tayeb, M.A., Ismail,
B.S. & Mardiana-Jansar, K. 2015. Comparison of four different solid phase
extraction cartridges for sample clean-up in the analysis of glufosinate
ammonium from aqueous samples. Int. J. ChemTech. Res. 7(6): 2612- 2619.
Tebbe, C.C. & Reber,
H.H. 1991. Degradation of [14C] phosphinothricin (glufosinate) in soil under
laboratory conditions: Effects of concentration and soil amendments on 14CO2
production. Biol. Fertil. Soils 11(1): 62-67.
Tseng, S.H., Lo, Y.W.,
Chang, P.C., Chou, S.S. & Chang, H.M. 2004. Simultaneous quantification of
glyphosate, glufosinate, and their major metabolites in rice and soybean
sprouts by gas chromatography with pulsed flame photometric detector. J.
Agric. Food Chem. 52(13): 4057-4063.
Tsuji, M.,
Akiyama, Y. & Yano, M. 1997. Simultaneous determination of glufosinate and
glyphosate in crops. Analytical Sciences 13(2): 283-285.
Weber, J., Wilkerson, G.
& Reinhardt, C. 2004. Calculating pesticide sorption coefficients (Kd)
using selected soil properties. Chemosphere 55: 157-166.
You, W. & Barker,
A.V. 2007. Effects of soil-applied glufosinate-ammonium on tomato plant growth
and ammonium accumulation. Commun. Soil Sci. Plant Anal. 35(13-14):
1945-1955.
You, W. & Barker,
A.V. 2002. Herbicidal actions of root-applied glufosinate ammonium on tomato
plants. J. Am. Soc. Hortic. Sci. 127(2): 200-204.
Yun, Z., Kai, W., Wu, J.
& Zhang, H. 2014. Field dissipation and storage stability of glufosinate
ammonium and its metabolites in soil. Int. J. Environ. Anal. Chem. 2014:
256091.
Zablotowicz, R., Krutz,
L., Weaver, M.A., Accinelli, C. & Reddy, K.N. 2008. Glufosinate and
ammonium sulfate inhibit atrazine degradation in adapted soils. Biol. Fert.
Soils 45(1): 19-26.
*Corresponding author;
email: mardiana@ukm.edu.my