Sains Malaysiana 48(12)(2019): 2623–2631

http://dx.doi.org/10.17576/jsm-2019-4812-03

 

The Effects of P-Hydroxycinnamic Acid in Ameliorating Spatial Learning and Flexibility Deficits in Rats with Chronic Cerebral Hypoperfusion

(Kesan Asid P-Hidroksisinamik dalam Meningkatkan Pembelajaran Reruang dan Defisit Kefleksibelan pada Tikus dengan Hipoperfusi Serebrum Kronik)

 

NATSUDA MANYAGASA & WACHIRYAH THONG-ASA*

 

Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

 

Received: 21 May 2019/Accepted: 26 September 2019

 

ABSTRACT

Cerebral blood reduction resulting in oligemic energy failure and metabolic insufficiency initiates gradual neurodegeneration and cognitive impairments. We investigated the neuroprotective effects of p-hydroxycinnamic acid (pHCA) on neurodegeneration in association with cognitive impairments in rats with chronic cerebral hypoperfusion (CCH). Forty male Sprague-Dawley rats were randomly divided into 4 groups: Sham-veh, 2VO-veh, 2VO-pHCA50 and 2VO-pHCA100. We used modified 2-vessel occlusion (2VO) to induce CCH, and the 2 latter groups were given 50 mg/kg and 100 mg/kg of pHCA after the 2VO operation, respectively, which continued for 3 weeks. The behavioral tests consisted of anxiety-like behavior tested in an elevated plus maze (EPM) and hippocampal-dependent spatial learning and flexibility tested in a Morris water maze (MWM). Brain oxidative status, infarction, vulnerable hippocampus and corpus callosum (CC) white matter degeneration were evaluated. The results showed that modified 2VO induced reversible short-term anxiolytic-like behavior in the EPM (p < 0.05). Brain tissue analysis showed that modified 2VO induced gradual change to brain oxidative status (p > 0.05) with significance infarction, vulnerable hippocampal CA1, CA3, DG and CC degeneration (p < 0.05). These were found along with significant spatial learning and flexibility deficits (p < 0.05). Additionally, 100 mg/kg of pHCA significantly ameliorated the spatial learning and flexibility deficits, which coincided with the significant decreases of infarction volume, CA1, CA3 and CC degeneration (p < 0.05). We conclude that pHCA's improving effects on spatial learning and flexibility deficits are neuroprotective against oligemic energy failure-induced vulnerable neuronal and white matter degeneration in CCH rats.

Keywords: Bilateral common carotid artery occlusion; chronic cerebral hypoperfusion; learning flexibility; modified 2VO; p-hydroxycinnamic acid; spatial learning; water maze

 

ABSTRAK

Pengurangan darah serebrum yang mengakibatkan kegagalan tenaga oligemik dan kekurangan metabolik merupakan permulaan neurodegenerasi saraf secara beransur-ansur dan merupakan masalah kognitif. Kami mengkaji kesan neuropelindung asid p-hidroksisinamik (pHCA) pada degenerasi saraf yang berkaitan dengan masalah kognitif pada tikus hypoperfusion cerebral kronik (CCH). Tikus Sprague-Dawley jantan empat puluh ekor secara rawak dibahagikan kepada 4 kelompok, iaitu Sham-veh, 2VO-veh, 2VO-pHCA50 dan 2VO-pHCA100. Kami menggunakan modul dua haluan kapal (2VO) untuk induksi CCH, dan kedua-dua kelompok terakhir diberikan pHCA 50 mg./kg. dan 100 mg./kg. selepas 2VO beroperasi dan berterusan selama 3 minggu. Ujian tingkah laku terdiri daripada tingkah laku seperti kecemasan dalam lorongan keliru atas terbaik (EPM) dan pembelajaran spatial yang bergantung pada hipokampal dan kefleksibelan dalam lorongan keliru air Morris (MWM). Status oksidatif otak, otot, hipokampus dan korpus kalosum (CC) degenerasi bahan putih yang dinilai. Hasil menunjukkan bahawa 2VO diubah suai yang disebabkan oleh tingkah laku seperti anziolisis jangka pendek yang boleh diterbalikkan dalam EPM (p <0.05). Analisis tisu otak menunjukkan 2VO yang diubah suai secara beransur-ansur mengubah status oksidatif otak (p> 0.05) dengan infark bererti, hipokampal CA1, CA3, DG dan CC degenerasi yang terdedah (p <0.05). Ini ditemui bersama dengan pembelajaran reruang dan defisit kefleksibelan (p <0.05). Kepentingan pHCA 100 mg./kg. meningkatkan pembelajaran reruang dan kekurangan kefleksibelan bertepatan dengan penurunan bermakna kelantangan infarksi, CA1, CA3 dan CC degenerasi (p <0.05). Kami menyimpulkan bahawa pHCA meningkatkan kesan terhadap pembelajaran reruang dan defisit kefleksibelan melibatkan perlindungan saraf terhadap kegagalan tenaga oligemik yang disebabkan kemerosotan bahan neuron dan kemerosotan zat putih dalam tikus CCH.

Kata kunci: Asid p-hidroksisinamik; hipoperfusi serebrum kronik; kefleksibelan pembelajaran; lorongan keliru air; oklusi arteri karotid dua hala biasa; pembelajaran reruang; 2VO diubah suai

REFERENCES

Bahar, A.S., Shirvalkar, P.R. & Shapiro, M.L. 2011. Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. The Journal of Neuroscience 31(34): 12270-12281.

Bennett, S.A., Tenniswood, M., Chen, J.H., Davidson, C.M., Keyes, M.T., Fortin, T. & Pappas, B.A. 1998. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport 9(1): 161-166.

Broadbent, N.J., Squire, L.R. & Clark, R.E. 2004. Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101(40): 14515-14520.

Cechetti, F., Worm, P.V., Pereira, L.O., Siqueira, I.R. & A. Netto, C. 2010. The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz. J. Med. Biol. Res. 43(12): 1178-1183.

de Bortoli, V.C., Zangrossi Jnior, H., de Aguiar Corra, F.M., de Sousa Almeida, S. & de Oliveira, A.M. 2005. Inhibitory avoidance memory retention in the elevated T-maze is impaired after perivascular manipulation of the common carotid arteries. Life Sciences 76(18): 2103-2114.

De Jong, G.I., Farkas, E., Stienstra, C.M., Plass, J.R.M., Keijser, J.N., de la Torre, J.C. & Luiten, P.G.M. 1999. Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment. Neuroscience 91(1): 203-210.

de la Torre, J.C. 2000. Critically attained threshold of cerebral hypoperfusion: The CATCH hypothesis of Alzheimer's pathogenesis. Neurobiology of Aging 21(2): 331-342.

de Wilde, M.C., Farkas, E., Gerrits, M., Kiliaan, A.J. & Luiten, P.G.M. 2002. The effect of n-3 polyunsaturated fatty acid-rich diets on cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion. Brain Research 947(2): 166-173.

Du, S-Q., Wang, X-R., Xiao, L-Y., Tu, J-F., Zhu, W., He, T. & Liu, C-Z. 2016. Molecular mechanisms of vascular dementia: What can be learned from animal models of chronic cerebral hypoperfusion? Molecular Neurobiology 54: 3670-3682.

Eichenbaum, H., P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila. 1999. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23 (2):209-26.

Erkinjuntti, T. 2008. Cerebrovascular disease, vascular cognitive impairment and dementia. Psychiatry 7(1): 15-19.

Farkas, E., Donka, G., de Vos, R.A. Mihaly, A., Bari, F. & Luiten, P.G. 2004. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108(1): 57-64.

Farkas, E., Institoris, A., Domoki, F., Mihaly, A. & Bari, F. 2006. The effect of pre- and posttreatment with diazoxide on the early phase of chronic cerebral hypoperfusion in the rat. Brain Res. 1087(1): 168-174.

Farkas, E., Institoris, A., Domoki, F., Mihaly, A., Luiten, P.G. & Bari, F. 2004. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res. 1008(2): 252-260.

Farkas, E., Luiten, P.G.M. & Bari, F. 2007. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases Brain Research Reviews 54(1): 162-180.

Farkas, E. & Luiten. P.G.M. 2001. Cerebral microvascular pathology in aging and Alzheimer’s disease. Progress in Neurobiology 64(6): 575-611.

Gerlai, R.T., McNamara, A., Williams, S. & Phillips, H.S. 2002. Hippocampal dysfunction and behavioral deficit in the water maze in mice: An unresolved issue? Brain Res. Bull. 57(1): 3-9.

Guven, M., Aras, A.B., Akman, T., Sen, H.M., Ozkan, A., Salis, O., Sehitoglu, I., Kalkan, Y., Silan, C., Deniz, M. & Cosar, M. 2015. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iran J. Basic Med. Sci. 18(4): 356-363.

Hou, S.T., MacManus, J.P. & Kwang, W.J. 2002. Molecular mechanisms of cerebral ischemia-induced neuronal death. International Review of Cytology 221: 93-148.

Izquierdo, A., Brigman, J.L., Radke, A.K., Rudebeck, P.H. & Holmes, A. 2016. The neural basis of reversal learning: An updated perspective. Neuroscience 345: 12-26.

Izquierdo, A. & Jentsch, J.D. 2012. Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219(2): 607-620.

Kesner, R.P. 2000. Behavioral analysis of the contribution of the hippocampus and parietal cortex to the processing of information: interactions and dissociations. Hippocampus 10(4): 483-490.

Kesner, R.P. 2007. Behavioral functions of the CA3 subregion of the hippocampus. Learn Mem. 14(11): 771-781.

Kim, H.B., Lee, S., Hwang, E.S., Maeng, S. & Park, J.H. 2017. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Biochem. Biophys. Res. Commun. 492(3): 493-499.

Li Nan, Gu Zhiqiang, Li Yunfei, Fu Xiaojie, Wang Jianping & Bai Hongying. 2015. A modified bilateral carotid artery stenosis procedure to develop a chronic cerebral hypoperfusion rat model with an increased survival rate. Journal of Neuroscience Methods 255: 115-121.

Liu, H.X., Zhang, J.J., Zheng, P. & Zhang, Y. 2005. Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res. Mol. Brain Res. 139(1): 169-177.

Mehta, S.L., Manhas, N. & Raghubir, R. 2007. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Research Reviews 54(1): 34-66.

Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods 11(1): 47-60.

Moser, E.I., Moser, M.B. & Squire, L.R. 2009. Hippocampus and Neural Representations. In Encyclopedia of Neuroscience. Oxford: Academic Press.

Moser, M.B. & Moser, E.I. 1998. Functional differentiation in the hippocampus. Hippocampus 8(6): 608-619.

Moser, M.B., Moser, E.I., Forrest, E., Andersen, P. & Morris, R.G. 1995. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 92(21): 9697-9701.

O'Keefe, J. 1993. Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 3(6): 917-924.

O'Keefe, J. & Conway, D.H. 1978. Hippocampal place units in the freely moving rat: Why they fire where they fire. Exp. Brain Res. 31(4): 573-590.

O'Keefe, J. & Dostrovsky, J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1): 171-175.

Otori, T., Katsumata, T., Muramatsu, H., Kashiwagi, F., Katayama, Y. & Terashi, A. 2003. Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin. Exp. Pharmacol. Physiol. 30(4): 266-272.

Paxinos, G. & Watson, C. 2006. The Rat Brain in Stereotaxic Coordinates. 6 ed. Massachusetts: Academic Press.

Pei, K., Ou, J., Huang, J. & Ou, S. 2015. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 96(9): 2952-2962.

Plamondon, H. & Khan, S. 2005. Characterization of anxiety and habituation profile following global ischemia in rats. Physiology & Behavior 84(4): 543-552.

Pouzet, B., Welzl, H., Gubler, M.K., Broersen, L., Veenman, C.L., Feldon, J., Rawlins, J.N. & Yee, B.K. 1999. The effects of NMDA-induced retrohippocampal lesions on performance of four spatial memory tasks known to be sensitive to hippocampal damage in the rat. Eur. J. Neurosci. 11(1): 123-140.

Russig, H., Durrer, A., Yee, B.K., Murphy, C.A. & Feldon, J. 2003. The acquisition, retention and reversal of spatial learning in the morris water maze task following withdrawal from an escalating dosage schedule of amphetamine in wistar rats. Neuroscience 119(1): 167-179.

Sakamula, R. & Thong-Asa, W. 2018. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 33(3): 765-773.

Sarti, C., Pantoni, L., Bartolini, L. & Inzitari, D. 2002. Cognitive impairment and chronic cerebral hypoperfusion: What can be learned from experimental models. J. Neurol. Sci. 203-204: 263-266.

Sasaki, T., Leutgeb, S. & Leutgeb, J.K. 2015. Spatial and memory circuits in the medial entorhinal cortex. Current Opinion in Neurobiology 32: 16-23.

Saxena, A.K., Saif Saad Abdul-Majeed, Gurtu, S. & Mohamed, W.M.Y. 2015. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats. Applied & Translational Genomics 5: 30-32.

Scheepens, A., Bisson, J.F. & Skinner, M. 2014. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo. Phytother. Res. 28(2): 207-211.

Schrader, A.J., Taylor, R.M., Lowery-Gionta, E.G. & Moore, N.L.T. 2018. Repeated elevated plus maze trials as a measure for tracking within-subjects behavioral performance in rats (Rattus norvegicus). PLoS ONE 13(11): e0207804.

Teschendorf, P., Padosch, S.A., Spohr, F., Albertsmeier, M., Schneider, A., Vogel, P., Choi, Y.H., Bottiger, B.W. & Popp, E. 2008. Time course of caspase activation in selectively vulnerable brain areas following global cerebral ischemia due to cardiac arrest in rats. Neurosci. Lett. 448(2): 194-199.

Thong-Asa, W. & Tilokskulchai, K. 2014. Neuronal damage of the dorsal hippocampus induced by long-term right common carotid artery occlusion in rats. Iran J. Basic Med. Sci. 17(3): 220-226.

Vila-Ballo, A., Mas-Herrero, E., Ripolles, P., Simo, M., Miro, J., Cucurell, D., Lopez-Barroso, D., Juncadella, M., Marco- Pallares, J., Falip, M. & Rodriguez-Fornells, A. 2017. Unraveling the role of the hippocampus in reversal learning. J. Neurosci. 37(28): 6686-6697.

Winter, B., Juckel, G., Viktorov, I., Katchanov, J., Gietz, A., Sohr, R., Balkaya, M., Hortnagl, H. & Endres, M. 2005. Anxious and hyperactive phenotype following brief ischemic episodes in mice. Biol. Psychiatry 57(10): 1166-1175.

Wolfer, D.P., Mohajeri, H.M., Lipp, H.P. & Schachner, M. 1998. Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur. J. Neurosci. 10(2): 708-717.

Yan, B., He, J., Xu, H., Zhang, Y., Bi, X., Thakur, S., Gendron, A., Kong, J. & Li, X-M. 2007. Quetiapine attenuates the depressive and anxiolytic-like behavioural changes induced by global cerebral ischemia in mice. Behavioural Brain Research 182(1): 36-41.

 

*Corresponding author; email: fsciwyth@ku.ac.th

 

 

 

 

 

previous