Sains Malaysiana 48(12)(2019): 2623–2631
http://dx.doi.org/10.17576/jsm-2019-4812-03
The
Effects of P-Hydroxycinnamic Acid in Ameliorating Spatial Learning and
Flexibility Deficits in Rats with Chronic Cerebral Hypoperfusion
(Kesan Asid P-Hidroksisinamik dalam Meningkatkan Pembelajaran Reruang
dan Defisit Kefleksibelan pada Tikus dengan Hipoperfusi Serebrum
Kronik)
NATSUDA MANYAGASA
& WACHIRYAH THONG-ASA*
Animal
Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology
Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok
10900, Thailand
Received: 21
May 2019/Accepted: 26 September 2019
ABSTRACT
Cerebral blood reduction resulting in oligemic energy failure and
metabolic insufficiency initiates gradual neurodegeneration and
cognitive impairments. We investigated the neuroprotective effects
of p-hydroxycinnamic acid (pHCA) on neurodegeneration in association
with cognitive impairments in rats with chronic cerebral hypoperfusion
(CCH). Forty male Sprague-Dawley rats
were randomly divided into 4 groups: Sham-veh, 2VO-veh, 2VO-pHCA50
and 2VO-pHCA100. We used modified 2-vessel occlusion (2VO)
to induce CCH,
and the 2 latter groups were given 50 mg/kg and 100 mg/kg of pHCA
after the 2VO operation, respectively, which continued for 3 weeks.
The behavioral tests consisted of anxiety-like behavior tested in
an elevated plus maze (EPM)
and hippocampal-dependent spatial learning and flexibility tested
in a Morris water maze (MWM). Brain oxidative status, infarction, vulnerable hippocampus
and corpus callosum (CC) white matter degeneration
were evaluated. The results showed that modified 2VO induced reversible
short-term anxiolytic-like behavior in the EPM (p
< 0.05). Brain tissue analysis showed that modified 2VO induced
gradual change to brain oxidative status (p > 0.05) with significance
infarction, vulnerable hippocampal CA1, CA3, DG and CC degeneration
(p < 0.05). These were found along with significant spatial learning
and flexibility deficits (p < 0.05). Additionally, 100 mg/kg
of pHCA significantly ameliorated the spatial learning and flexibility
deficits, which coincided with the significant decreases of infarction
volume, CA1, CA3 and CC
degeneration (p < 0.05). We conclude that pHCA's
improving effects on spatial learning and flexibility deficits are
neuroprotective against oligemic energy failure-induced vulnerable
neuronal and white matter degeneration in CCH
rats.
Keywords: Bilateral common carotid artery occlusion; chronic
cerebral hypoperfusion; learning flexibility; modified 2VO; p-hydroxycinnamic
acid; spatial learning; water maze
ABSTRAK
Pengurangan darah serebrum yang mengakibatkan kegagalan tenaga oligemik
dan kekurangan metabolik merupakan permulaan neurodegenerasi saraf
secara beransur-ansur dan merupakan masalah kognitif. Kami mengkaji
kesan neuropelindung asid p-hidroksisinamik (pHCA)
pada degenerasi saraf yang berkaitan dengan masalah kognitif pada
tikus hypoperfusion cerebral kronik (CCH). Tikus Sprague-Dawley jantan
empat puluh ekor secara rawak dibahagikan kepada 4 kelompok, iaitu
Sham-veh, 2VO-veh, 2VO-pHCA50 dan 2VO-pHCA100. Kami
menggunakan modul dua haluan kapal (2VO) untuk induksi CCH,
dan kedua-dua kelompok terakhir diberikan pHCA 50 mg./kg.
dan 100 mg./kg. selepas 2VO beroperasi dan berterusan selama 3 minggu.
Ujian tingkah laku terdiri daripada tingkah laku seperti kecemasan
dalam lorongan keliru atas terbaik (EPM) dan pembelajaran spatial yang bergantung pada hipokampal
dan kefleksibelan dalam lorongan keliru air Morris (MWM).
Status oksidatif otak, otot, hipokampus dan korpus kalosum
(CC) degenerasi bahan putih yang dinilai. Hasil menunjukkan bahawa
2VO diubah suai yang disebabkan oleh tingkah laku seperti anziolisis
jangka pendek yang boleh diterbalikkan dalam EPM (p <0.05). Analisis
tisu otak menunjukkan 2VO yang diubah suai secara beransur-ansur
mengubah status oksidatif otak (p> 0.05) dengan infark bererti,
hipokampal CA1, CA3, DG dan CC degenerasi yang terdedah (p <0.05).
Ini ditemui bersama dengan pembelajaran reruang dan defisit kefleksibelan
(p <0.05). Kepentingan pHCA 100 mg./kg. meningkatkan pembelajaran
reruang dan kekurangan kefleksibelan bertepatan dengan penurunan
bermakna kelantangan infarksi, CA1, CA3 dan CC degenerasi (p <0.05).
Kami menyimpulkan bahawa pHCA meningkatkan kesan terhadap pembelajaran
reruang dan defisit kefleksibelan melibatkan perlindungan saraf
terhadap kegagalan tenaga oligemik yang disebabkan kemerosotan bahan
neuron dan kemerosotan zat putih dalam tikus CCH.
Kata kunci: Asid p-hidroksisinamik; hipoperfusi serebrum kronik; kefleksibelan pembelajaran; lorongan keliru air; oklusi arteri karotid dua hala
biasa; pembelajaran reruang; 2VO diubah suai
REFERENCES
Bahar, A.S., Shirvalkar, P.R. & Shapiro,
M.L. 2011. Memory-guided learning: CA1 and CA3 neuronal ensembles
differentially encode the commonalities and differences between
situations. The Journal of Neuroscience 31(34): 12270-12281.
Bennett, S.A., Tenniswood, M., Chen, J.H.,
Davidson, C.M., Keyes, M.T., Fortin, T. & Pappas, B.A. 1998. Chronic
cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport 9(1): 161-166.
Broadbent, N.J., Squire, L.R. & Clark,
R.E. 2004. Spatial memory, recognition memory, and the hippocampus. Proc
Natl Acad Sci U S A 101(40): 14515-14520.
Cechetti, F., Worm, P.V., Pereira, L.O.,
Siqueira, I.R. & A. Netto, C. 2010. The modified 2VO ischemia protocol
causes cognitive impairment similar to that induced by the standard method, but
with a better survival rate. Braz. J. Med. Biol. Res. 43(12): 1178-1183.
de Bortoli, V.C., Zangrossi J๚nior, H., de Aguiar Corr๊a, F.M., de Sousa Almeida, S. & de
Oliveira, A.M. 2005. Inhibitory avoidance memory retention in the elevated
T-maze is impaired after perivascular manipulation of the common carotid
arteries. Life Sciences 76(18): 2103-2114.
De Jong, G.I., Farkas, E., Stienstra, C.M., Plass, J.R.M., Keijser, J.N.,
de la Torre, J.C. & Luiten, P.G.M. 1999. Cerebral hypoperfusion yields
capillary damage in the hippocampal CA1 area that correlates with spatial
memory impairment. Neuroscience 91(1): 203-210.
de la Torre, J.C. 2000. Critically attained threshold of cerebral
hypoperfusion: The CATCH hypothesis of Alzheimer's pathogenesis.
Neurobiology of Aging 21(2): 331-342.
de Wilde, M.C., Farkas, E., Gerrits, M., Kiliaan, A.J. &
Luiten, P.G.M. 2002. The effect of n-3 polyunsaturated fatty acid-rich diets on
cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion. Brain
Research 947(2): 166-173.
Du, S-Q., Wang, X-R., Xiao, L-Y., Tu, J-F., Zhu, W., He, T. &
Liu, C-Z. 2016. Molecular mechanisms of vascular dementia: What can be learned
from animal models of chronic cerebral hypoperfusion? Molecular Neurobiology 54: 3670-3682.
Eichenbaum, H., P. Dudchenko, E. Wood, M. Shapiro, and H. Tanila.
1999. The hippocampus, memory, and place cells: is it spatial memory or a
memory space? Neuron 23 (2):209-26.
Erkinjuntti, T. 2008. Cerebrovascular disease, vascular cognitive
impairment and dementia. Psychiatry 7(1): 15-19.
Farkas, E., Donka, G., de Vos, R.A. Mihaly, A., Bari, F. &
Luiten, P.G. 2004. Experimental cerebral hypoperfusion induces white matter
injury and microglial activation in the rat brain. Acta Neuropathol 108(1):
57-64.
Farkas, E., Institoris, A., Domoki, F., Mihaly, A. & Bari, F.
2006. The effect of pre- and posttreatment with diazoxide on the early phase of
chronic cerebral hypoperfusion in the rat. Brain Res. 1087(1): 168-174.
Farkas, E., Institoris, A., Domoki, F., Mihaly, A., Luiten, P.G.
& Bari, F. 2004. Diazoxide and dimethyl sulphoxide prevent cerebral
hypoperfusion-related learning dysfunction and brain damage after carotid
artery occlusion. Brain Res. 1008(2): 252-260.
Farkas, E., Luiten, P.G.M. & Bari, F. 2007. Permanent,
bilateral common carotid artery occlusion in the rat: A model for chronic
cerebral hypoperfusion-related neurodegenerative diseases Brain Research
Reviews 54(1): 162-180.
Farkas, E. & Luiten. P.G.M. 2001. Cerebral microvascular
pathology in aging and Alzheimer’s disease. Progress in Neurobiology 64(6):
575-611.
Gerlai, R.T., McNamara, A., Williams, S. & Phillips, H.S.
2002. Hippocampal dysfunction and behavioral deficit in the water maze in mice:
An unresolved issue? Brain Res. Bull. 57(1): 3-9.
Guven, M., Aras, A.B., Akman, T., Sen, H.M., Ozkan, A., Salis, O.,
Sehitoglu, I., Kalkan, Y., Silan, C., Deniz, M. & Cosar, M. 2015.
Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral
ischemia. Iran J. Basic Med. Sci. 18(4): 356-363.
Hou, S.T., MacManus, J.P. & Kwang, W.J. 2002. Molecular
mechanisms of cerebral ischemia-induced neuronal death. International Review
of Cytology 221: 93-148.
Izquierdo, A., Brigman, J.L., Radke, A.K., Rudebeck, P.H. &
Holmes, A. 2016. The neural basis of reversal learning: An updated perspective. Neuroscience 345: 12-26.
Izquierdo, A. & Jentsch, J.D. 2012. Reversal learning as a
measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219(2): 607-620.
Kesner, R.P. 2000. Behavioral analysis of the contribution of the
hippocampus and parietal cortex to the processing of information: interactions
and dissociations. Hippocampus 10(4): 483-490.
Kesner, R.P. 2007. Behavioral functions of the CA3 subregion of
the hippocampus. Learn Mem. 14(11): 771-781.
Kim, H.B., Lee, S., Hwang, E.S., Maeng, S. & Park, J.H. 2017.
p-Coumaric acid enhances long-term potentiation and recovers
scopolamine-induced learning and memory impairments. Biochem. Biophys. Res.
Commun. 492(3): 493-499.
Li Nan, Gu Zhiqiang, Li Yunfei, Fu Xiaojie, Wang Jianping &
Bai Hongying. 2015. A modified bilateral carotid artery stenosis procedure to
develop a chronic cerebral hypoperfusion rat model with an increased survival
rate. Journal of Neuroscience Methods 255: 115-121.
Liu, H.X., Zhang, J.J., Zheng, P. & Zhang, Y. 2005. Altered
expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with
chronic cerebral hypoperfusion correlates with cognitive impairment. Brain
Res. Mol. Brain Res. 139(1): 169-177.
Mehta, S.L., Manhas, N. & Raghubir, R. 2007. Molecular targets
in cerebral ischemia for developing novel therapeutics. Brain Research
Reviews 54(1): 34-66.
Morris, R. 1984. Developments of a water-maze procedure for
studying spatial learning in the rat. Journal of Neuroscience Methods 11(1):
47-60.
Moser, E.I., Moser, M.B. & Squire, L.R. 2009. Hippocampus and
Neural Representations. In Encyclopedia of Neuroscience. Oxford:
Academic Press.
Moser, M.B. & Moser, E.I. 1998. Functional differentiation in
the hippocampus. Hippocampus 8(6): 608-619.
Moser, M.B., Moser, E.I., Forrest, E., Andersen, P. & Morris,
R.G. 1995. Spatial learning with a minislab in the dorsal hippocampus. Proc.
Natl. Acad. Sci. USA 92(21): 9697-9701.
O'Keefe, J. 1993. Hippocampus, theta, and spatial memory. Curr.
Opin. Neurobiol. 3(6): 917-924.
O'Keefe, J. & Conway, D.H. 1978. Hippocampal place units in the
freely moving rat: Why they fire where they fire. Exp. Brain
Res. 31(4): 573-590.
O'Keefe, J. & Dostrovsky, J. 1971. The hippocampus as a spatial
map. Preliminary evidence from unit activity in the freely-moving
rat. Brain Res. 34(1): 171-175.
Otori, T., Katsumata, T., Muramatsu, H., Kashiwagi, F., Katayama,
Y. & Terashi, A. 2003. Long-term measurement of cerebral blood flow and
metabolism in a rat chronic hypoperfusion model. Clin. Exp. Pharmacol.
Physiol. 30(4): 266-272.
Paxinos, G. & Watson, C. 2006. The Rat Brain in Stereotaxic
Coordinates. 6 ed. Massachusetts: Academic Press.
Pei, K., Ou, J., Huang, J. & Ou, S. 2015. p-Coumaric acid and
its conjugates: Dietary sources, pharmacokinetic properties and biological
activities. J. Sci. Food Agric. 96(9): 2952-2962.
Plamondon, H. & Khan, S. 2005. Characterization of anxiety and
habituation profile following global ischemia in rats. Physiology &
Behavior 84(4): 543-552.
Pouzet, B., Welzl, H., Gubler, M.K., Broersen, L., Veenman, C.L.,
Feldon, J., Rawlins, J.N. & Yee, B.K. 1999. The effects of NMDA-induced
retrohippocampal lesions on performance of four spatial memory tasks known to
be sensitive to hippocampal damage in the rat. Eur. J. Neurosci. 11(1):
123-140.
Russig, H., Durrer, A., Yee, B.K., Murphy, C.A. & Feldon, J.
2003. The acquisition, retention and reversal of spatial learning in the morris
water maze task following withdrawal from an escalating dosage schedule of
amphetamine in wistar rats. Neuroscience 119(1): 167-179.
Sakamula, R. & Thong-Asa, W. 2018. Neuroprotective effect of
p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab.
Brain Dis. 33(3): 765-773.
Sarti, C.,
Pantoni, L., Bartolini, L. & Inzitari, D. 2002. Cognitive impairment
and chronic cerebral hypoperfusion: What can be learned from experimental
models. J. Neurol. Sci. 203-204: 263-266.
Sasaki, T., Leutgeb, S.
& Leutgeb, J.K. 2015. Spatial and memory circuits in the medial entorhinal
cortex. Current Opinion in Neurobiology 32: 16-23.
Saxena, A.K., Saif Saad
Abdul-Majeed, Gurtu, S. & Mohamed, W.M.Y. 2015. Investigation of redox
status in chronic cerebral hypoperfusion-induced neurodegeneration in rats. Applied
& Translational Genomics 5: 30-32.
Scheepens, A., Bisson,
J.F. & Skinner, M. 2014. p-Coumaric acid activates the GABA-A receptor in
vitro and is orally anxiolytic in vivo. Phytother. Res. 28(2):
207-211.
Schrader, A.J., Taylor,
R.M., Lowery-Gionta, E.G. & Moore, N.L.T. 2018. Repeated elevated plus maze trials as a measure for tracking within-subjects
behavioral performance in rats (Rattus norvegicus). PLoS ONE 13(11):
e0207804.
Teschendorf, P.,
Padosch, S.A., Spohr, F., Albertsmeier, M., Schneider, A., Vogel, P., Choi,
Y.H., Bottiger, B.W. & Popp, E. 2008. Time course of caspase activation in
selectively vulnerable brain areas following global cerebral ischemia due to
cardiac arrest in rats. Neurosci. Lett. 448(2): 194-199.
Thong-Asa, W. &
Tilokskulchai, K. 2014. Neuronal damage of the dorsal hippocampus induced by
long-term right common carotid artery occlusion in rats. Iran J. Basic Med.
Sci. 17(3): 220-226.
Vila-Ballo, A.,
Mas-Herrero, E., Ripolles, P., Simo, M., Miro, J., Cucurell, D., Lopez-Barroso,
D., Juncadella, M., Marco- Pallares, J., Falip, M. & Rodriguez-Fornells, A.
2017. Unraveling the role of the hippocampus in reversal learning. J.
Neurosci. 37(28): 6686-6697.
Winter, B., Juckel, G.,
Viktorov, I., Katchanov, J., Gietz, A., Sohr, R., Balkaya, M., Hortnagl, H.
& Endres, M. 2005. Anxious and hyperactive phenotype following brief
ischemic episodes in mice. Biol. Psychiatry 57(10): 1166-1175.
Wolfer, D.P., Mohajeri,
H.M., Lipp, H.P. & Schachner, M. 1998. Increased flexibility and
selectivity in spatial learning of transgenic mice ectopically expressing the
neural cell adhesion molecule L1 in astrocytes. Eur. J. Neurosci. 10(2):
708-717.
Yan, B., He, J., Xu, H.,
Zhang, Y., Bi, X., Thakur, S., Gendron, A., Kong, J. & Li, X-M. 2007.
Quetiapine attenuates the depressive and anxiolytic-like behavioural changes
induced by global cerebral ischemia in mice. Behavioural Brain Research 182(1):
36-41.
*Corresponding
author; email: fsciwyth@ku.ac.th
|