Sains Malaysiana 48(12)(2019):
2759–2766
http://dx.doi.org/10.17576/jsm-2019-4812-17
Application of Variable Zero-Moment
Point in Walking Control of the Biped Robot
(Penggunaan Pemboleh Ubah Titik
Momen Sifar
pada Kawalan Berjalan
Robot Dua Kaki)
CHENGLIN JING*
School of Mathematics
and Statistics, Guizhou University of
Finance and Economics, Guiyang, 550025, China
Received: 21 February 2019/Accepted:
23 December 2019
ABSTRACT
Using
the predictive control based on zero-moment point (ZMP),
the biped robot can walk comparatively stably. However, the problems
such as lack of self-adaptivity are also
highlighted mainly on account of modeling errors and environmental
perturbations; specifically, the tracking errors of ZMP are generated, leading to a reduced
walking stability. To address this problem, in the present work,
the expected ZMP was decomposed into the reference ZMP which
is pre-planned offline, and the variable ZMP which can be varied in real
time. With the addition of the variable ZMP, the outside interferences
can be eliminated. By combining the predictive control system and
the inverse system of variable ZMP, the walking pattern of the robot
with favorable self-adaptivity can be
achieved. Finally, the simulation results indicate that the self-adaptivity
of the robot can be effectively improved using the proposed control
system.
Keywords:
Biped robot; inverse system; predictive control; self-adaptivity;
variable zero-moment point (ZMP)
ABSTRAK
Penggunaan kawalan ramalan berdasarkan titik momen sifar (ZMP),
robot dua kaki boleh berjalan
dengan agak stabil.
Walau bagaimanapun,
masalah seperti kekurangan penyesuaian diri juga diketengahkan
terutamanya pada
kesilapan pemodelan dan alam sekitar;
secara khusus,
kesilapan pengesanan ZMP
dijana, membawa kepada pengurangan kestabilan berjalan. Untuk menangani masalah ini dalam
kajian semasa,
ZMP
yang dijangka telah
reput ke dalam
rujukan ZMP yang dipra-rancang
secara luar
talian, dan pemboleh
ubah ZMP yang boleh
diubah dalam
masa nyata. Dengan penambahan
pemboleh ubah
ZMP,
gangguan luar
boleh dihapuskan. Dengan menggabungkan sistem kawalan ramalan dan sistem
songsang pemboleh
ubah ZMP, pola berjalan robot dengan penyesuaian diri yang menggalakkan boleh dicapai. Kesimpulannya, keputusan simulasi menunjukkan bahawa penyesuaian diri robot boleh diperbaiki dengan berkesan menggunakan sistem kawalan cadangan.
Kata kunci: Kawalan
ramalan; pemboleh
ubah titik momen
sifar (ZMP); penyesuaian
diri; robot dua kaki; sistem
songsang
REFERENCES
Chang,
J. & Liu, G. 2012. Designing a control system for humanoid soccer
robots. Computer Applications and Software 29(11): 302-304,
333.
Czarnetzki, S., Kerner, S. & Urbann, O. 2009.
Observer-based dynamic walking control for biped robots. Robotics
and Autonomous Systems 57(2009): 839-845.
Fu,
G., Yang, Y., Chen, J. & Li, J. 2013. Walking control for humanoid
robot based on ZMP error correction. Robot 35(1): 39-44.
Gao,
W. & Wang, W.F. 2017. The fifth geometric-arithmetic index of
bridge graph and carbon nanocones. Journal
of Difference Equations and Applications 23(1-2SI): 100-109.
Hans,
S., Tripathi, D., Mogbademu,
A.A. & Tyagi, B. 2018. Inequalities
for rational functions with prescribed poles. Journal of Interdisciplinary
Mathematics 21(1): 157-169.
Huy, T.D., Phuong, N.T., Loc, H.D. & Cuong, N.C. 2013.
A simple walking control method for biped robot with stable gait.
Journal of Computer Science and Cybernetics 29(2): 105-118.
Jimmy,
O.R. 2010. A hybrid CPG-ZMP control system for stable walking of
a simulated flexible spine humanoid robot. Neural Networks 23(1):
452-460.
Jing,
C., Xue, F., Zhang, H. & Li, Z. 2010.
Implementation method of predictive control for biped robot stabilization
walking pattern. Chinese Journal of Scientific Instrument 31(12):
2700-2705.
Kajita, S. & Guan,
Y. 2007. Humanoid Robots. Beijing: Tsinghua University Press.
Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro,
F. & Fujiwara, K. 2006. Biped walking pattern generator allowing
auxiliary ZMP Control. Internationonal
Conference on Intelligent Robots and Systems. Beijing, China.
pp. 2993- 2999.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi,
K. & Hirukawa, H. 2003. Biped walking
pattern generation by using preview control of zero-moment point.
Conference on Robotics & Automation. Taiwan, China. pp.
1620-1626.
Katayama,
T., Ohki, T. & Inoue, T. 1985. Design of an optimal controller
for a discrete time system subject to previewable
demand. International Journal of Control 41(3): 677-699.
Khusainov, R., Afanasyev, I., Sabirova, L. &
Magid, E. 2016. Bipedal robot locomotion
modelling with virtual height inverted pendulum and preview control
approaches in Simulink environment. Journal of Robotics, Networking
and Artificial Life 3(3): 182-187.
Kljuno, E. & Williams,
R.L. 2010. Humanoid walking robot: Modeling, inverse dynamics, and
gain scheduling control. Journal of Robotics 2010: Article
ID: 278597.
Kunimatsu, S., Fukuda, T.,
Nakasaki, K. & Ishitobi, M.
2008. l͚
Preview
control for biped walking pattern generation. SICE Annual Conference.
Japan: The University Electro- Communications. pp. 1916-1919.
Liu, Z., Peng, W., Zare, Y., Hui, D. & Rhee, K.Y. 2018. Predicting the electrical
conductivity in polymer carbon nanotube nanocomposites based on
the volume fractions and resistances of the nanoparticle, interphase,
and tunneling regions in conductive networks. RSC
Advances 8(34): 19001-19010.
Mansour,
T. & Shattuck, M. 2017. Set partitions and parity successions.
Journal of Discrete Mathematical Sciences and Cryptography 20(8):
1651-1674.
New
ASIMO. 2011. Honda Motor Co. Ltd., New ASIMO [EB/ OL]. http://world.honda.com/HDTV/ASIM-O/New-ASIMO-run-
6kmh-slomo/index.htm.
Park,
J. & Youm, Y. 2007. General ZMP preview
control for bipedal walking. IEEE International Conference on
Robotics and Automation. Roma, Italy. pp. 2682-2687.
Peng,
W.X., Wang, L.S., Mirzaee, M., Ahmadi,
H., Esfahani, M. & JFremaux, S.
2017. Hydrogen and syngas production by catalytic biomass gasification.
Energy Conversion and Management 135: 270-273.
Promsakon, C. 2018. Edge colorability of unitary endo-cayley
graphs of cyclic groups. Journal of Discrete Mathematical Sciences
and Cryptography 2(1): 191-198.
Shimmyo, S., Sato, T. &
Ohnishi, K. 2013. Biped walking pattern generation by using preview
control based on three-mass model. IEEE Transactions on Industrial
Electronics 60(11): 5137-5147.
Sugihara,
T. & Yamamoto, T. 2017. Foot-guided agile control of a biped
robot through ZMP manipulation. IEEE International Conference
on Intelligent Robots and Systems. Vancouver, Canada. pp. 4546-4551.
Xue, F. & Chen, X. 2012. Novel gait
pattern planning method for increasing flexibility of biped robot.
Journal of Chinese Computer Systems 33(9): 1928-1933.
Yu,
X., Wei, S. & Liao, Q. 2009. Development and technology research
of humanoid robot. Journal of Mechanical Engineering 45(3):
71-75.
Zeng,
H. & Yang, Y. 2014. On-line gait planning by using preview control
of zero moment point. Journal of Computer Applications 34(2):
514-518.
*Corresponding author;
email: 1265805946@qq.com
|