Sains Malaysiana 48(12)(2019): 2759–2766

http://dx.doi.org/10.17576/jsm-2019-4812-17

 

Application of Variable Zero-Moment Point in Walking Control of the Biped Robot

(Penggunaan Pemboleh Ubah Titik Momen Sifar pada Kawalan Berjalan Robot Dua Kaki)

 

CHENGLIN JING*

 

School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, China

 

Received: 21 February 2019/Accepted: 23 December 2019

 

ABSTRACT

Using the predictive control based on zero-moment point (ZMP), the biped robot can walk comparatively stably. However, the problems such as lack of self-adaptivity are also highlighted mainly on account of modeling errors and environmental perturbations; specifically, the tracking errors of ZMP are generated, leading to a reduced walking stability. To address this problem, in the present work, the expected ZMP was decomposed into the reference ZMP which is pre-planned offline, and the variable ZMP which can be varied in real time. With the addition of the variable ZMP, the outside interferences can be eliminated. By combining the predictive control system and the inverse system of variable ZMP, the walking pattern of the robot with favorable self-adaptivity can be achieved. Finally, the simulation results indicate that the self-adaptivity of the robot can be effectively improved using the proposed control system.

 

Keywords: Biped robot; inverse system; predictive control; self-adaptivity; variable zero-moment point (ZMP)

 

ABSTRAK

Penggunaan kawalan ramalan berdasarkan titik momen sifar (ZMP), robot dua kaki boleh berjalan dengan agak stabil. Walau bagaimanapun, masalah seperti kekurangan penyesuaian diri juga diketengahkan terutamanya pada kesilapan pemodelan dan alam sekitar; secara khusus, kesilapan pengesanan ZMP dijana, membawa kepada pengurangan kestabilan berjalan. Untuk menangani masalah ini dalam kajian semasa, ZMP yang dijangka telah reput ke dalam rujukan ZMP yang dipra-rancang secara luar talian, dan pemboleh ubah ZMP yang boleh diubah dalam masa nyata. Dengan penambahan pemboleh ubah ZMP, gangguan luar boleh dihapuskan. Dengan menggabungkan sistem kawalan ramalan dan sistem songsang pemboleh ubah ZMP, pola berjalan robot dengan penyesuaian diri yang menggalakkan boleh dicapai. Kesimpulannya, keputusan simulasi menunjukkan bahawa penyesuaian diri robot boleh diperbaiki dengan berkesan menggunakan sistem kawalan cadangan.

Kata kunci: Kawalan ramalan; pemboleh ubah titik momen sifar (ZMP); penyesuaian diri; robot dua kaki; sistem songsang

 

REFERENCES

Chang, J. & Liu, G. 2012. Designing a control system for humanoid soccer robots. Computer Applications and Software 29(11): 302-304, 333.

Czarnetzki, S., Kerner, S. & Urbann, O. 2009. Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems 57(2009): 839-845.

Fu, G., Yang, Y., Chen, J. & Li, J. 2013. Walking control for humanoid robot based on ZMP error correction. Robot 35(1): 39-44.

Gao, W. & Wang, W.F. 2017. The fifth geometric-arithmetic index of bridge graph and carbon nanocones. Journal of Difference Equations and Applications 23(1-2SI): 100-109.

Hans, S., Tripathi, D., Mogbademu, A.A. & Tyagi, B. 2018. Inequalities for rational functions with prescribed poles. Journal of Interdisciplinary Mathematics 21(1): 157-169.

Huy, T.D., Phuong, N.T., Loc, H.D. & Cuong, N.C. 2013. A simple walking control method for biped robot with stable gait. Journal of Computer Science and Cybernetics 29(2): 105-118.

Jimmy, O.R. 2010. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot. Neural Networks 23(1): 452-460.

Jing, C., Xue, F., Zhang, H. & Li, Z. 2010. Implementation method of predictive control for biped robot stabilization walking pattern. Chinese Journal of Scientific Instrument 31(12): 2700-2705.

Kajita, S. & Guan, Y. 2007. Humanoid Robots. Beijing: Tsinghua University Press.

Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro, F. & Fujiwara, K. 2006. Biped walking pattern generator allowing auxiliary ZMP Control. Internationonal Conference on Intelligent Robots and Systems. Beijing, China. pp. 2993- 2999.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. & Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. Conference on Robotics & Automation. Taiwan, China. pp. 1620-1626.

Katayama, T., Ohki, T. & Inoue, T. 1985. Design of an optimal controller for a discrete time system subject to previewable demand. International Journal of Control 41(3): 677-699.

Khusainov, R., Afanasyev, I., Sabirova, L. & Magid, E. 2016. Bipedal robot locomotion modelling with virtual height inverted pendulum and preview control approaches in Simulink environment. Journal of Robotics, Networking and Artificial Life 3(3): 182-187.

Kljuno, E. & Williams, R.L. 2010. Humanoid walking robot: Modeling, inverse dynamics, and gain scheduling control. Journal of Robotics 2010: Article ID: 278597.

Kunimatsu, S., Fukuda, T., Nakasaki, K. & Ishitobi, M. 2008. l͚ Preview control for biped walking pattern generation. SICE Annual Conference. Japan: The University Electro- Communications. pp. 1916-1919.

Liu, Z., Peng, W., Zare, Y., Hui, D. & Rhee, K.Y. 2018. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks. RSC Advances 8(34): 19001-19010.

Mansour, T. & Shattuck, M. 2017. Set partitions and parity successions. Journal of Discrete Mathematical Sciences and Cryptography 20(8): 1651-1674.

New ASIMO. 2011. Honda Motor Co. Ltd., New ASIMO [EB/ OL]. http://world.honda.com/HDTV/ASIM-O/New-ASIMO-run- 6kmh-slomo/index.htm.

Park, J. & Youm, Y. 2007. General ZMP preview control for bipedal walking. IEEE International Conference on Robotics and Automation. Roma, Italy. pp. 2682-2687.

Peng, W.X., Wang, L.S., Mirzaee, M., Ahmadi, H., Esfahani, M. & JFremaux, S. 2017. Hydrogen and syngas production by catalytic biomass gasification. Energy Conversion and Management 135: 270-273.

Promsakon, C. 2018. Edge colorability of unitary endo-cayley graphs of cyclic groups. Journal of Discrete Mathematical Sciences and Cryptography 2(1): 191-198.

Shimmyo, S., Sato, T. & Ohnishi, K. 2013. Biped walking pattern generation by using preview control based on three-mass model. IEEE Transactions on Industrial Electronics 60(11): 5137-5147.

Sugihara, T. & Yamamoto, T. 2017. Foot-guided agile control of a biped robot through ZMP manipulation. IEEE International Conference on Intelligent Robots and Systems. Vancouver, Canada. pp. 4546-4551.

Xue, F. & Chen, X. 2012. Novel gait pattern planning method for increasing flexibility of biped robot. Journal of Chinese Computer Systems 33(9): 1928-1933.

Yu, X., Wei, S. & Liao, Q. 2009. Development and technology research of humanoid robot. Journal of Mechanical Engineering 45(3): 71-75.

Zeng, H. & Yang, Y. 2014. On-line gait planning by using preview control of zero moment point. Journal of Computer Applications 34(2): 514-518.

 

*Corresponding author; email: 1265805946@qq.com

 

 

 

 

 

previous