Sains Malaysiana 48(12)(2019):
2777–2785
http://dx.doi.org/10.17576/jsm-2019-4812-19
Adaptive Smoothness Constraint Image
Multilevel Fuzzy Enhancement Algorithm
(Algoritma Peningkatan Kabur Imej Multiparas Kelancaran Kekangan Mudah Suai)
XI CHU1,
ZHIXIANG
ZHOU1*,
CHAOSHAN
YANG2
& XIAOJU XIANG1
1School of Civil Engineering
& Department of State Key Laboratory Breeding, Base of Mountain
Bridge Tunnel Engineering, Chongqing Jiaotong
University, Chongqing, 400074, China
2Department of Military
Installations, Department of Army Logistics University of PLA, Chongqing,
401331, China
Received: 21 February 2019/Accepted:
23 December 2019
ABSTRACT
For the problems of poor enhancement
effect and long time consuming of the traditional algorithm, an
adaptive smoothness constraint image multilevel fuzzy enhancement
algorithm based on secondary color-to-grayscale conversion is proposed.
By using fuzzy set theory and generalized fuzzy set theory, a new
linear generalized fuzzy operator transformation is carried out
to obtain a new linear generalized fuzzy operator. By using linear
generalized membership transformation and inverse transformation,
secondary color-to-grayscale conversion of adaptive smoothness constraint
image is performed. Combined with generalized fuzzy operator, the
region contrast fuzzy enhancement of adaptive smoothness constraint
image is realized, and image multilevel fuzzy enhancement is realized.
Experimental results show that the fuzzy degree of the image is
reduced by the improved algorithm, and the clarity of the adaptive
smoothness constraint image is improved effectively. The time consuming
is short, and it has some advantages.
Keywords: Adaptive; fuzzy enhancement;
image; multilevel; smoothness constraint
ABSTRAK
Disebabkan masalah
kesan peningkatan
yang lemah dan masa yang panjang oleh algoritma
tradisi, satu
cadangan algoritma peningkatan kabur imej berbilang paras
kelancaran
kekangan mudah suai berdasarkan penukaran sekunder warna kepada skala
kelabu dicadangkan.
Dengan menggunakan teori set kabur dan teori set kabur
teritlak, transformasi
pengendali kabur yang baru telah dijalankan
untuk mendapatkan
operator kabur linear yang baru. Dengan menggunakan transformasi keahlian linear teritlak dan transformasi
songsang, penukaran
sekunder warna kepada skala kelabu
bagi imej kekangan mudah suai dijalankan. Digabungkan dengan operator kabur teritlak, rantau kontras peningkatan kabur imej kekangan mudah
suai direalisasikan
dan peningkatan imej dalam multiparas direalisasikan. Hasil uji kaji menunjukkan
bahawa imej
tahap kabur dikurangkan
oleh algoritma
yang lebih baik dan
kejelasan imej
kelancaran kekangan mudah suai diperbaiki
dengan berkesan.
Masa yang diperlukan singkat dan ia mempunyai
beberapa kelebihan.
Kata kunci: Imej; kekangan
yang tidak rata; berbilang paras; peningkatan
kabur; penyesuaian
REFERENCES
Abutaleb,
A.S. 1989. Automatic thresholding of gray level pictures using two-dimensional
entropy. Comput. Vision Graphics Image Process 47: 22-32.
Bao, D.M. 2017. Design
and application of visualization software for computer remote image
definition processing. Modern Electronic Technology 40(19):
98-101.
Cai, Z.P., Niu, C., Zhang, X.Y., et al. 2016. Target tracking algorithm
based on fuzzy adaptive ckf. Electro-optic
and Control 10: 8-12.
He, F.J., Li, Q.W.,
Han, H., et al. 2017. Adaptive enhancement of borehole images based
on homomorphic filtering and curve let transform. Sensors and
Microsystems 36(8): 145-148.
He, R.J., Fan, Y.Y.,
Wang, Z.Y., et al. 2016. A new method for single fog image restoration
based on non-local total variation regularization optimization.
Journal of Electronics and Information Technology 38(10):
2509-2514.
He, W. & Dong,
Y. 2018. Adaptive fuzzy neural network control for a constrained
robot using impedance learning. IEEE Transactions on Neural Networks
& Learning Systems 29(4): 1174-1186.
Huang, W.G., Zhang,
Y.P., Bi, W., et al. 2018. Low illumination image decomposition
and detail enhancement under gradient sparse and least square constraints.
Acta Electronica Sinica
46(2): 424-432.
Huang, S., Li, Z.,
Li, F., et al. 2016. Fast fuzzy clustering image segmentation based
on improved particle swarm optimization and adaptive filtering.
Computer Measurement and Control 24(4): 171-173.
Jobson, D.,
Rahman, Z. & Woodell. G. 1997. A multiscale Retinex for bridging
the gap between color images and the human observation of scenes.
IEEE Trans. Image Processing 6(7).
Ju, G., Yuan, L., Liu,
X.Y., et al. 2016. Adaptive image enhancement method based on multi-algorithm
fusion. Acta Photonica Sinica 45(12): 136-144.
Kong, L., He, W.,
Yang, C., et al. 2019. Adaptive fuzzy control for coordinated multiple
robots with constraint using impedance learning. IEEE Transactions
on Cybernetics 49(8): 3052- 3063.
Land, E.H. 1964.
The Retinex. American Scientist 52: 247-264.
Li, L. & Qiao, W.Z. 2017. Research on edge detection of irregular defects
based on fuzzy enhancement algorithm. Sensor World 23(9):
13-16.
Li, T., He, X.H.,
Qing, L.B., et al. 2017. Super - Resolution reconstruction of noisy
images based on adaptive block set cut a priori. Acta
Automatica Sinica
43(5): 765-777.
Li, X. & Liu,
Z.Y. 2016. Research on fuzzy adaptive ant colony algorithm based
on cloud model. Computer Engineering and Application 52(2):
24-27.
Li, Y.X., Zhao, M.
& Sun, D.H. 2018. A fast image enhancement algorithm for highway
tunnel pedestrian detection. Conference: 2018 Chinese Control
and Decision Conference (CCDC). pp. 3485-3490.
Liu, Z. 2018. What
is the future of solar energy? Economic and policy barriers. Energy
Sources Part B-Economics Planning and Policy 13(3): 169-172.
Liu, J.J. 2017. Fast
enhancement simulation of fuzzy region of low-dimensional image
in fog environment. Computer Simulation 34(2): 397-400.
Liu, J., Ni, B. &
Hao, J.B. 2017. Minimum energy constrained
image interaction estimation deblurring
algorithm. Computer Engineering and Design 42(12): 3402-3407.
Lu, R., Song, X.X.,
Li, Q., et al. 2017. Face image processing based on fuzzy algorithm.
Shandong Industrial Technology 12(13): 261-261.
Meylan, L. &
Susstrunk, S. 2006. High dynamic range image rendering with a retinex-based
adaptive filter. IEEE Trans. Image Processing 15(9).
Pal, S.K. & King,
R. 1981. Image enhancement using smoothing with fuzzy sets. IEEE
Trans. Sys., Man, and Cyber 11(7): 494-500.
Pal, S.K. & King,
R. 1980. Image enhancement using fuzzy set. Electron. Lett.
16: 376-378.
Prabha, D.S. & Kumar, J.S. 2017 An efficient
image contrast enhancement algorithm using genetic algorithm and
fuzzy intensification operator. Wireless Personal Communications
93(1): 223-244.
Quan, Y.Q., Li, T.J., Deng, J.X., et al.
2016. Adaptive image enhancement algorithm based on fuzzy set and
nonlinear gain. Computer Application Research 1: 311-315.
Ramos Gandolfi, O.R., Goncalves, F.G.R.,
Bonomo, F.R.C. & Fontan, I.R.D.C.
2018. Sorption equilibrium and kinetics of thin-layer drying of
green bell peppers. Emirates Journal of Food and Agriculture
30(2): 137-143.
Ren, K.Q., Hu, M.Y.
& Yu, L.J. 2017. Adaptive fuzzy image registration algorithm
based on kaze. Journal of Electronic Measurement and Instrumentation
31(4): 559-565.
Sanchez Camacho,
E.A. & Martinez Morales, M. 2017. Estimation of the volume of
underground water for a coastal wetland. Revista
Internacional De Contaminacion Ambiental 33(SI): 65-76.
Shakeri, M., Dezfoulian,
M.H., Khotanlou, H., Barati, A.H. & Masoumi, Y. 2017. Image
contrast enhancement using fuzzy clustering with adaptive cluster
parameter and sub-histogram equalization. Digital Signal Processing
62: 224-237.
Song, R., Da, L.I.
& Wang, X. 2017. Low illumination image enhancement algorithm
based on HSI color space. Journal of Graphics 38(2): 217-223.
Sun, W., Dong, E.
& Qiao, H. 2017. A fuzzy energy-based
active contour model with adaptive contrast constraint for local
segmentation. Signal Image & Video Processing 12(12):
1-8.
Wang, B.P., Ma, J.J.,
Han, Z.X., Zhang, Y., Fang, Y. & Ge, Y.M. 2018. Adaptive image
enhancement algorithm based on fuzzy entropy and human visual characteristics.
Systems Engineering and Electronic Technology 29(5): 1079-1088.
Wang, F.P., Wang,
W.X., Yang, N., et al. 2017. Urban traffic image enhancement based
on improved retinex. Journal of Transportation Systems Engineering
and Information Technology 2017(5): 53-59.
Wang, H. & Zheng,
B.G. 2016. Image reconstruction algorithm based on weighted TV/sar joint prior and minimum linear KL divergence. Measurement
and Control Technology 35(1): 38-42.
Wang, K. 2017. Research
of enhancement algorithm for infrared image based on the fuzzy set
theory. IOP Conference Series Earth and Environmental Science
69(1): 012180.
Yi, S.L., Chen, Y.
& He, J.F. 2016. Fourth - Order equation image smoothing method
for establishing a novel edge leakage compensation mechanism. Acta
Electronica Sinica 44(4): 813-820.
Yue, G.W., Lu, X.S.,
Liu, B., et al. 2016. Wellbore disease identification method based
on improved active contour model. Coal Engineering 48(5):
115-118.
Zadeh, L.A. 1965.
Fuzzy Sets. Inform. Control 8: 338-353.
Zhang, X., Zhao,
X.F., Shi, Y.L., et al. 2017. Adaptive merge histogram stretch enhancement
algorithm for UUV sea surface infrared reconnaissance image. Applied
Science and Technology 43(6): 1-4.
Zhou, F., Jia, Z., Yang, J., et al. 2017. Method of improved fuzzy contrast
combined adaptive threshold in NSCT for medical image enhancement.
BioMed Research International 10: 3969152.
Zong, H., Cao, Y. &
Liu, Z. 2018. Energy security in group of seven (g7): A quantitative
approach for renewable energy policy. Energy Sources Part B-Economics
Planning and Policy 13(3): 173-175.
*Corresponding author; email: jfnchuxi@yahoo.com
|